
Apple
Platform Security

May 2024

2Apple Platform Security

Contents

Apple Platform Security	 5

Intro to Apple platform security	 5

Hardware security and biometrics	 7

Hardware security overview	 7

Apple SoC security	 8

Secure Enclave	 9

Face ID and Touch ID	 19

Hardware microphone disconnect	 29

Express Cards with power reserve	 30

System security	 31

System security overview	 31

Secure boot	 32

Signed system volume security	 58

Secure software updates	 60

Operating system integrity	 62

Activating data connections securely	 65

Verifying accessories	 66

BlastDoor for Messages and IDS	 66

Lockdown Mode security	 67

Additional macOS system security capabilities	 68

System security for watchOS	 81

Random number generation	 86

Apple Security Research Device	 87

3Apple Platform Security

Encryption and Data Protection	 89

Encryption and Data Protection overview	 89

Passcodes and passwords	 90

Data Protection	 93

FileVault	 108

How Apple protects users’ personal data	 113

Digital signing and encryption	 116

App security	 118

App security overview	 118

App security in iOS and iPadOS	 120

App security in macOS	 128

Secure features in the Notes app	 133

Secure features in the Shortcuts app	 134

Services security	 135

Services security overview	 135

Apple ID and Managed Apple ID	 135

iCloud	 138

Passcode and password management	 150

Apple Pay	 162

Using Apple Wallet	 181

iMessage	 196

Secure Apple Messages for Business	 200

FaceTime security	 201

Find My	 202

Continuity	 206

Network security	 210

Network security overview	 210

TLS security	 210

IPv6 security	 212

VPN security	 213

Wi-Fi security	 214

Bluetooth security	 218

Ultra Wideband security in iOS	 220

Single sign-on	 220

AirDrop security	 222

Wi-Fi password sharing security on iPhone and iPad	 223

Firewall security in macOS	 223

4Apple Platform Security

Developer kit security	 224

Developer kit security overview	 224

HomeKit security	 224

SiriKit security	 230

WidgetKit security	 231

DriverKit security	 232

ReplayKit security	 233

ARKit security	 235

Secure device management	 236

Secure device management overview	 236

Pairing model security	 237

Mobile device management	 238

Apple Configurator security	 247

Screen Time security	 248

Glossary	 250

Document revision history	 255

Document revision history	 255

Copyright	 265

5Apple Platform Security

Apple Platform Security

Introduction to Apple platform security
Apple designs security into the core of its platforms. Building on the experience of
creating the world’s most advanced mobile operating system, Apple has created security
architectures that address the unique requirements of mobile, watch, desktop, and home.

Every Apple device combines hardware, software, and services designed to work together
for maximum security and a transparent user experience in service of the ultimate goal
of keeping personal information safe. For example, Apple-designed silicon and security
hardware powers critical security features. And software protections work to keep the
operating system and third-party apps protected. Finally, services provide a mechanism
for secure and timely software updates, power a protected app ecosystem, and facilitate
secure communications and payments. As a result, Apple devices protect not only the
device and its data but the entire ecosystem, including everything users do locally, on
networks, and with key internet services.

Just as we design our products to be simple, intuitive, and capable, we design them to
be secure. Key security features, such as hardware-based device encryption, can’t be
disabled by mistake. Other features, such as Face ID and Touch ID, enhance the user
experience by making it simpler and more intuitive to secure the device. And because many
of these features are enabled by default, users or IT departments don’t need to perform
extensive configurations.

This documentation provides details about how security technology and features are
implemented within Apple platforms. It also helps organizations combine Apple platform
security technology and features with their own policies and procedures to meet their
specific security needs.

The content is organized into the following topic areas:

•	 Hardware security and biometrics: The silicon and hardware that forms the
foundation for security on Apple devices, including Apple silicon, the Secure Enclave,
cryptographic engines, Face ID, and Touch ID

•	 System security: The integrated hardware and software functions that provide for the
safe boot, update, and ongoing operation of Apple operating systems

•	 Encryption and Data Protection: The architecture and design that protects user data
if the device is lost or stolen or if an unauthorized person or process attempts to use or
modify it

•	 App security: The software and services that provide a safe app ecosystem and enable
apps to run securely and without compromising platform integrity

6Apple Platform Security

•	 Services security: Apple’s services for identification, password management,
payments, communications, and finding lost devices

•	 Network security: Industry-standard networking protocols that provide secure
authentication and encryption of data in transmission

•	 Developer kit security: Framework “kits” for secure and private management of home
and health, as well as extension of Apple device and service capabilities to third-party
apps

•	 Secure device management: Methods that allow management of Apple devices,
help prevent unauthorized use, and enable remote wipe if a device is lost or stolen

A commitment to security
Apple is committed to helping protect customers with leading privacy and security
technologies—designed to safeguard personal information—and comprehensive methods,
to help protect corporate data in an enterprise environment. Apple rewards researchers for
the work they do to uncover vulnerabilities by offering the Apple Security Bounty. Details of
the program and bounty categories are available at https://security.apple.com/bounty/.

We maintain a dedicated security team to support all Apple products. The team provides
security auditing and testing for products, both under development and released.
The Apple team also provides security tools and training, and actively monitors for threats
and reports of new security issues. Apple is a member of the Forum of Incident Response
and Security Teams (FIRST).

Apple continues to push the boundaries of what’s possible in security and privacy. It uses
custom Apple silicon across the product lineup—from Apple Watch, to iPhone and iPad,
to the M-series chips in Mac—powering not only efficient computation but also security.
For example, Apple silicon forms the foundation for secure boot, Face ID and Touch ID,
and Data Protection. In addition, security features powered by Apple silicon—such
as Kernel Integrity Protection, Pointer Authentication Codes, and Fast Permission
Restrictions—help thwart common types of exploitation. Therefore even if attacker code
somehow executes, the damage it can do is dramatically reduced.

To make the most of the extensive security features built into our platforms, organizations
are encouraged to review their IT and security policies to ensure that they are taking full
advantage of the layers of security technology offered by these platforms.

To learn more about reporting issues to Apple and subscribing to security notifications,
see Report a security or privacy vulnerability.

Apple believes privacy is a fundamental human right and has numerous built-in controls
and options that allow users to decide how and when apps use their information, as well
as what information is being used. To learn more about Apple’s approach to privacy,
privacy controls on Apple devices, and the Apple privacy policy, see https://www.apple.
com/privacy.

Note: Unless otherwise noted, this documentation covers the following operating system
versions: iOS 17.3, iPadOS 17.3, macOS 14.3, tvOS 17.3, and watchOS 10.3.

https://security.apple.com/bounty/
https://www.first.org
https://www.first.org
https://support.apple.com/102549
https://www.apple.com/privacy
https://www.apple.com/privacy

7Apple Platform Security

Hardware security and biometrics

Hardware security overview
For software to be secure, it must rest on hardware that has security built in.
That’s why Apple devices—running iOS, iPadOS, macOS, tvOS, and watchOS—have
security capabilities designed into silicon. These capabilities include a CPU that powers
system security features, as well as additional silicon that’s dedicated to security
functions. Security-focused hardware follows the principle of supporting limited and
discretely defined functions to minimize attack surface. Such components include a boot
ROM, which forms a hardware root of trust for secure boot, dedicated AES engines for
efficient and secure encryption and decryption, and a Secure Enclave. The Secure Enclave
is a component on Apple system on chip (SoC) that is included on all recent iPhone,
iPad, Apple Watch, Apple TV and HomePod devices, and on a Mac with Apple silicon as
well as those with the Apple T2 Security Chip. The Secure Enclave itself follows the same
principle of design as the SoC does, containing its own discrete boot ROM and AES engine.
The Secure Enclave also provides the foundation for the secure generation and storage of
the keys necessary for encrypting data at rest, and it protects and evaluates the biometric
data for Face ID and Touch ID.

Storage encryption must be fast and efficient. At the same time, it can’t expose the data
(or keying material) it uses to establish cryptographic keying relationships. The AES
hardware engine solves this problem by performing fast in-line encryption and decryption
as files are written or read. A special channel from the Secure Enclave provides necessary
keying material to the AES engine without exposing this information to the Application
Processor (or CPU) or overall operating system. This helps ensure that the Apple Data
Protection and FileVault technologies protect users’ files without exposing long-lived
encryption keys.

Apple has designed secure boot to protect the lowest levels of software against tampering
and to allow only trusted operating system software from Apple to load at startup. Secure
boot begins in immutable code called the Boot ROM, which is laid down during Apple SoC
fabrication and is known as the hardware root of trust. On Mac computers with a T2 chip,
trust for macOS secure boot begins with the T2. (Both the T2 chip and the Secure Enclave
also execute their own secure boot processes using their own separate boot ROM—this is
an exact analogue to how the A-series, M1, and M2 chips boot securely.)

The Secure Enclave also processes face and fingerprint data from Face ID and Touch ID
sensors in Apple devices. This provides secure authentication while keeping user biometric
data private and secure. It also allows users to benefit from the security of longer and
more complex passcodes and passwords with, in many situations, the convenience of swift
authentication for access or purchases.

8Apple Platform Security

Apple SoC security
Apple-designed silicon forms a common architecture across all Apple products and now
powers Mac as well as iPhone, iPad, Apple TV, and Apple Watch. For over a decade,
Apple’s world-class silicon design team has been building and refining Apple systems
on chip (SoCs). The result is a scalable architecture designed for all devices that leads
the industry in security capabilities. This common foundation for security features is only
possible from a company that designs its own silicon to work with its software.

Apple silicon has been designed and fabricated to specifically enable the system security
features detailed below.

Feature A10 A11, S3 A12, A13, A14

S4–S9

A15, A16, A17 M1, M2, M3

Kernel Integrity
Protection

Fast Permission
Restrictions

System
Coprocessor
Integrity
Protection

Pointer
Authentication
Codes

Page Protection
Layer See Note 1

below.

Secure Page
Table Monitor See Note 2

below.

Note 1: Page Protection Layer (PPL) requires that the platform execute only signed and
trusted code; this is a security model that isn’t applicable in macOS.

Note 2: Secure Page Table Monitor (SPTM) is supported on A15, A16, and A17 and replaces
Page Protection Layer on supported platforms.

Apple-designed silicon also specifically enables the Data Protection capabilities detailed
below.

Feature A10, A11

S3

A12–A17

S4–S9

M1, M2, M3

Sealed Key Protection (SKP)

recoveryOS - All Data Protection
Classes protected

Alternate boots of DFU, Diagnostics,
and Update - Class A, B, and C data
protected

9Apple Platform Security

Secure Enclave
The Secure Enclave is a dedicated secure subsystem in the latest versions of iPhone,
iPad, Mac, Apple TV, Apple Watch, and HomePod.

Overview
The Secure Enclave is a dedicated secure subsystem integrated into Apple systems on chip
(SoCs). The Secure Enclave is isolated from the main processor to provide an extra layer
of security and is designed to keep sensitive user data secure even when the Application
Processor kernel becomes compromised. It follows the same design principles as the SoC
does—a boot ROM to establish a hardware root of trust, an AES engine for efficient and
secure cryptographic operations, and protected memory. Although the Secure Enclave
doesn’t include storage, it has a mechanism to store information securely on attached
storage separate from the NAND flash storage that’s used by the Application Processor
and operating system.

10Apple Platform Security

The Secure Enclave is a hardware feature of most versions of iPhone, iPad, Mac, Apple TV,
Apple Watch, and HomePod—namely:

•	 iPhone 5s or later

•	 iPad Air or later

•	 Mac computers with Apple silicon

•	 MacBook Pro computers with Touch Bar (2016 and 2017) that contain the Apple T1 Chip

•	 Intel-based Mac computers that contain the Apple T2 Security Chip

•	 Apple TV HD or later

•	 Apple Watch Series 1 or later

•	 HomePod and HomePod mini

Secure Enclave Processor
The Secure Enclave Processor provides the main computing power for the Secure Enclave.
To provide the strongest isolation, the Secure Enclave Processor is dedicated solely for
Secure Enclave use. This helps prevent side-channel attacks that depend on malicious
software sharing the same execution core as the target software under attack.

The Secure Enclave Processor runs an Apple-customized version of the L4 microkernel.
It’s designed to operate efficiently at a lower clock speed that helps to protect it against
clock and power attacks. The Secure Enclave Processor, starting with the A11 and S4,
includes a memory-protected engine and encrypted memory with anti-replay capabilities,
secure boot, a dedicated random number generator, and its own AES engine.

11Apple Platform Security

Memory Protection Engine
The Secure Enclave operates from a dedicated region of the device’s DRAM memory.
Multiple layers of protection isolate the Secure Enclave protected memory from the
Application Processor.

When the device starts up, the Secure Enclave Boot ROM generates a random ephemeral
memory protection key for the Memory Protection Engine. Whenever the Secure Enclave
writes to its dedicated memory region, the Memory Protection Engine encrypts the block
of memory using AES in Mac XEX (xor-encrypt-xor) mode, and calculates a Cipher-based
Message Authentication Code (CMAC) authentication tag for the memory.
The Memory Protection Engine stores the authentication tag alongside the encrypted
memory. When the Secure Enclave reads the memory, the Memory Protection Engine
verifies the authentication tag. If the authentication tag matches, the Memory Protection
Engine decrypts the block of memory. If the tag doesn’t match, the Memory Protection
Engine signals an error to the Secure Enclave. After a memory authentication error, the
Secure Enclave stops accepting requests until the system is rebooted.

Starting with the Apple A11 and S4 SoCs, the Memory Protection Engine adds replay
protection for Secure Enclave memory. To help prevent replay of security-critical data,
the Memory Protection Engine stores a unique one-off number, called an anti-replay value,
for the block of memory alongside the authentication tag. The anti-replay value is used as
an additional tweak for the CMAC authentication tag. The anti-replay values for all memory
blocks are protected using an integrity tree rooted in dedicated SRAM within the Secure
Enclave. For writes, the Memory Protection Engine updates the anti-replay value and each
level of the integrity tree up to the SRAM. For reads, the Memory Protection Engine verifies
the anti-replay value and each level of the integrity tree up to the SRAM. Anti-replay value
mismatches are handled similarly to authentication tag mismatches.

On Apple A14, M1, or later SoCS, the Memory Protection Engine supports two ephemeral
memory protection keys. The first is used for data private to the Secure Enclave, and the
second is used for data shared with the Secure Neural Engine.

The Memory Protection Engine operates inline and transparently to the Secure Enclave.
The Secure Enclave reads and writes memory as if it were regular unencrypted
DRAM, whereas an observer outside the Secure Enclave sees only the encrypted and
authenticated version of the memory. The result is strong memory protection without
performance or software complexity tradeoffs.

12Apple Platform Security

Secure Enclave Boot ROM
The Secure Enclave includes a dedicated Secure Enclave Boot ROM. Like the Application
Processor Boot ROM, the Secure Enclave Boot ROM is immutable code that establishes the
hardware root of trust for the Secure Enclave.

On system startup, iBoot assigns a dedicated region of memory to the Secure Enclave.
Before using the memory, the Secure Enclave Boot ROM initializes the Memory Protection
Engine to provide cryptographic protection of the Secure Enclave protected memory.

The Application Processor then sends the sepOS image to the Secure Enclave Boot ROM.
After copying the sepOS image into the Secure Enclave protected memory, the Secure
Enclave Boot ROM checks the cryptographic hash and signature of the image to verify that
the sepOS is authorized to run on the device. If the sepOS image is properly signed to run
on the device, the Secure Enclave Boot ROM transfers control to sepOS. If the signature
isn’t valid, the Secure Enclave Boot ROM is designed to prevent any further use of the
Secure Enclave until the next chip reset.

On Apple A10 and later SoCs, the Secure Enclave Boot ROM locks a hash of the sepOS
into a register dedicated to this purpose. The Public Key Accelerator uses this hash for
operating-system-bound (OS-bound) keys.

Secure Enclave Boot Monitor
On Apple A13 and later SoCs, the Secure Enclave includes a Boot Monitor designed to
ensure stronger integrity on the hash of the booted sepOS.

At system startup, the Secure Enclave Processor’s System Coprocessor Integrity
Protection (SCIP) configuration helps prevent the Secure Enclave Processor from executing
any code other than the Secure Enclave Boot ROM. The Boot Monitor helps prevent the
Secure Enclave from modifying the SCIP configuration directly. To make the loaded sepOS
executable, the Secure Enclave Boot ROM sends the Boot Monitor a request with the
address and size of the loaded sepOS. On receipt of the request, the Boot Monitor resets
the Secure Enclave Processor, hashes the loaded sepOS, updates the SCIP settings to
allow execution of the loaded sepOS, and starts execution within the newly loaded code.
As the system continues booting, this same process is used whenever new code is made
executable. Each time, the Boot Monitor updates a running hash of the boot process.
The Boot Monitor also includes critical security parameters in the running hash.

When boot completes, the Boot Monitor finalizes the running hash and sends it to the
Public Key Accelerator to use for OS-bound keys. This process is designed so that
operating system key binding can’t be bypassed even with a vulnerability in the Secure
Enclave Boot ROM.

True Random Number Generator
The True Random Number Generator (TRNG) is used to generate secure random data.
The Secure Enclave uses the TRNG whenever it generates a random cryptographic key,
random key seed, or other entropy. The TRNG is based on multiple ring oscillators post
processed with CTR_DRBG (an algorithm based on block ciphers in Counter Mode).

13Apple Platform Security

Root Cryptographic Keys
The Secure Enclave includes a unique ID (UID) root cryptographic key. The UID is unique to
each individual device and isn’t related to any other identifier on the device.

A randomly generated UID is fused into the SoC at manufacturing time. Starting with A9
SoCs, the UID is generated by the Secure Enclave TRNG during manufacturing and written
to the fuses using a software process that runs entirely in the Secure Enclave. This process
protects the UID from being visible outside the device during manufacturing and therefore
isn’t available for access or storage by Apple or any of its suppliers.

sepOS uses the UID to protect device-specific secrets. The UID allows data to be
cryptographically tied to a particular device. For example, the key hierarchy protecting
the file system includes the UID, so if the internal SSD storage is physically moved from
one device to another, the files are inaccessible. Other protected device-specific secrets
include Face ID or Touch ID data. On a Mac, only fully internal storage linked to the AES
engine receives this level of encryption. For example, neither external storage devices
connected over USB nor PCIe-based storage added to the 2019 Mac Pro are encrypted in
this fashion.

The Secure Enclave also has a device group ID (GID), which is common to all devices that
use a given SoC (for example, all devices using the Apple A15 SoC share the same GID).

The UID and GID aren’t available through Joint Test Action Group (JTAG) or other
debugging interfaces.

Secure Enclave AES Engine
The Secure Enclave AES Engine is a hardware block used to perform symmetric
cryptography based on the AES cipher. The AES Engine is designed to resist leaking
information by using timing and Static Power Analysis (SPA). Starting with the A9 SoC,
the AES Engine also includes Dynamic Power Analysis (DPA) countermeasures.

The AES Engine supports hardware and software keys. Hardware keys are derived from
the Secure Enclave UID or GID. These keys stay within the AES Engine and aren’t made
visible even to sepOS software. Although software can request encryption and decryption
operations with hardware keys, it can’t extract the keys.

On Apple A10 and newer SoCs, the AES Engine includes lockable seed bits that diversify
keys derived from the UID or GID. This allows data access to be conditioned on the
device’s mode of operation. For example, lockable seed bits are used to deny access to
password-protected data when booting from Device Firmware Update (DFU) mode.
For more information, see Passcodes and passwords.

14Apple Platform Security

AES Engine
Every Apple device with a Secure Enclave also has a dedicated AES256 crypto engine
(the “AES Engine”) built into the direct memory access (DMA) path between the NAND
(nonvolatile) flash storage and main system memory, making file encryption highly
efficient. On A9 or later A-series processors, the flash storage subsystem is on an isolated
bus that’s granted access only to memory containing user data through the DMA crypto
engine.

At boot time, sepOS generates an ephemeral wrapping key using the TRNG. The Secure
Enclave transmits this key to the AES Engine using dedicated wires, designed to prevent it
from being accessed by any software outside the Secure Enclave. sepOS can then use the
ephemeral wrapping key to wrap file keys for use by the Application Processor file-system
driver. When the file-system driver reads or writes a file, it sends the wrapped key to the
AES Engine, which unwraps the key. The AES Engine never exposes the unwrapped key to
software.

Note: The AES Engine is a separate component from both the Secure Enclave and the
Secure Enclave AES Engine, but its operation is closely tied to the Secure Enclave,
as shown below.

15Apple Platform Security

Public Key Accelerator
The Public Key Accelerator (PKA) is a hardware block used to perform asymmetric
cryptography operations. The PKA supports RSA and ECC (Elliptic Curve Cryptography)
signing and encryption algorithms. The PKA is designed to resist leaking information using
timing and side-channel attacks such as SPA and DPA.

The PKA supports software and hardware keys. Hardware keys are derived from the Secure
Enclave UID or GID. These keys stay within the PKA and aren’t made visible even to sepOS
software.

Starting with A13 SoCs, the PKA’s encryption implementations have been proved to be
mathematically correct using formal verification techniques.

On Apple A10 and later SoCs, the PKA supports OS-bound keys, also referred to as Sealed
Key Protection (SKP). These keys are generated using a combination of the device’s UID
and the hash of the sepOS running on the device. The hash is provided by the Secure
Enclave Boot ROM, or by the Secure Enclave Boot Monitor on Apple A13 and later SoCs.
These keys are also used to verify the sepOS version when making requests to certain
Apple services and are also used to improve the security of passcode-protected data by
helping to prevent access to keying material if critical changes are made to the system
without user authorization.

16Apple Platform Security

Secure nonvolatile storage
The Secure Enclave is equipped with a dedicated secure nonvolatile storage device.
The secure nonvolatile storage is connected to the Secure Enclave using a dedicated I2C
bus, so that it can only be accessed by the Secure Enclave. All user data encryption keys
are rooted in entropy stored in the Secure Enclave nonvolatile storage.

In devices with A12, S4, and later SoCs, the Secure Enclave is paired with a Secure
Storage Component for entropy storage. The Secure Storage Component is itself designed
with immutable ROM code, a hardware random number generator, a per-device unique
cryptographic key, cryptography engines, and physical tamper detection.
The Secure Enclave and Secure Storage Component communicate using an encrypted and
authenticated protocol that provides exclusive access to the entropy.

Devices first released in Fall 2020 or later are equipped with a 2nd-generation Secure
Storage Component. The 2nd-generation Secure Storage Component adds counter
lockboxes. Each counter lockbox stores a 128-bit salt, a 128-bit passcode verifier, an 8-bit
counter, and an 8-bit maximum attempt value. Access to the counter lockboxes is through
an encrypted and authenticated protocol.

Counter lockboxes hold the entropy needed to unlock passcode-protected user data.
To access the user data, the paired Secure Enclave must derive the correct passcode
entropy value from the userʼs passcode and the Secure Enclaveʼs UID. The user’s passcode
can’t be learned using unlock attempts sent from a source other than the paired Secure
Enclave. If the passcode attempt limit is exceeded (for example, 10 attempts on iPhone),
the passcode-protected data is erased completely by the Secure Storage Component.

To create a counter lockbox, the Secure Enclave sends the Secure Storage Component the
passcode entropy value and the maximum attempt value. The Secure Storage Component
generates the salt value using its random number generator. It then derives a passcode
verifier value and a lockbox entropy value from the provided passcode entropy, the Secure
Storage Component’s unique cryptographic key, and the salt value. The Secure Storage
Component initializes the counter lockbox with a count of 0, the provided maximum
attempt value, the derived passcode verifier value, and the salt value. The Secure Storage
Component then returns the generated lockbox entropy value to the Secure Enclave.

To retrieve the lockbox entropy value from a counter lockbox later, the Secure Enclave
sends the Secure Storage Component the passcode entropy. The Secure Storage
Component first increments the counter for the lockbox. If the incremented counter
exceeds the maximum attempt value, the Secure Storage Component completely erases
the counter lockbox. If the maximum attempt count hasn’t been reached, the Secure
Storage Component attempts to derive the passcode verifier value and lockbox entropy
value with the same algorithm used to create the counter lockbox. If the derived passcode
verifier value matches the stored passcode verifier value, the Secure Storage Component
returns the lockbox entropy value to the Secure Enclave and resets the counter to 0.

The keys used to access password-protected data are rooted in the entropy stored in
counter lockboxes. For more information, see Data Protection overview.

17Apple Platform Security

The secure nonvolatile storage is used for all anti-replay services in the Secure Enclave.
Anti-replay services on the Secure Enclave are used for revocation of data over events that
mark anti-replay boundaries including, but not limited to, the following:

•	 Passcode change

•	 Enabling or disabling Face ID or Touch ID

•	 Adding or removing a Face ID face or a Touch ID fingerprint

•	 Face ID or Touch ID reset

•	 Adding or removing an Apple Pay card

•	 Erase All Content and Settings

On architectures that don’t feature a Secure Storage Component, EEPROM (electrically
erasable programmable read-only memory) is utilized to provide secure storage services
for the Secure Enclave. Just like the Secure Storage Components, the EEPROM is attached
and accessible only from the Secure Enclave, but it doesn’t contain dedicated hardware
security features nor does it guarantee exclusive access to entropy (aside from its physical
attachment characteristics) nor counter lockbox functionality.

Secure Neural Engine
On devices with Face ID (not Touch ID), the Secure Neural Engine converts 2D images and
depth maps into a mathematical representation of a user’s face.

On A11 through A13 SoCs, the Secure Neural Engine is integrated into the Secure Enclave.
The Secure Neural Engine uses direct memory access (DMA) for high performance.
An input-output memory management unit (IOMMU) under the sepOS kernel’s control limits
this direct access to authorized memory regions.

Starting with A14, M1, or later, the Secure Neural Engine is implemented as a secure mode
in the Application Processor’s Neural Engine. A dedicated hardware security controller
switches between Application Processor and Secure Enclave tasks, resetting Neural Engine
state on each transition to keep Face ID data secure. A dedicated engine applies memory
encryption, authentication, and access control. At the same time, it uses a separate
cryptographic key and memory range to limit the Secure Neural Engine to authorized
memory regions.

Power and clock monitors
All electronics are designed to operate within a limited voltage and frequency envelope.
When operated outside this envelope, the electronics can malfunction and then security
controls may be bypassed. To help ensure that the voltage and frequency stay in a safe
range, the Secure Enclave is designed with monitoring circuits. These monitoring circuits
are designed to have a much larger operating envelope than the rest of the Secure
Enclave. If the monitors detect an illegal operating point, the clocks in the Secure Enclave
automatically stop and don’t restart until the next SoC reset.

18Apple Platform Security

Secure Enclave feature summary
Note: A12, A13, S4, and S5 products first released in Fall 2020 have a 2nd-generation
Secure Storage Component, whereas while earlier products based on these SoCs have a
1st-generation Secure Storage Component.

SoC Memory Protection
Engine

Secure Storage AES Engine PKA

A8 Encryption and
authentication

EEPROM Yes No

A9 Encryption and
authentication

EEPROM DPA protection Yes

A10 Encryption and
authentication

EEPROM DPA protection and
lockable seed bits

OS-bound keys

A11 Encryption,
authentication, and
replay prevention

EEPROM DPA protection and
lockable seed bits

OS-bound keys

A12 (Apple devices
released before Fall
2020)

Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 1

DPA protection and
lockable seed bits

OS-bound keys

A12 (Apple devices
released after Fall
2020)

Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 2

DPA protection and
lockable seed bits

OS-bound keys

A13 (Apple devices
released before Fall
2020)

Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 1

DPA protection and
lockable seed bits

OS-bound keys and
Boot Monitor

A13 (Apple devices
released after Fall
2020)

Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 2

DPA protection and
lockable seed bits

OS-bound keys and
Boot Monitor

A14–A17 Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 2

DPA protection and
lockable seed bits

OS-bound keys and
Boot Monitor

S3 Encryption and
authentication

EEPROM DPA protection and
lockable seed bits

Yes

S4 Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 1

DPA protection and
lockable seed bits

OS-bound keys

S5 (Apple devices
released before Fall
2020)

Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 1

DPA protection and
lockable seed bits

OS-bound keys

S5 (Apple devices
released after Fall
2020)

Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 2

DPA protection and
lockable seed bits

OS-bound keys

S6–S9 Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 2

DPA protection and
lockable seed bits

OS-bound keys

T2 Encryption and
authentication

EEPROM DPA protection and
lockable seed bits

OS-bound keys

M1, M2, M3 Encryption,
authentication, and
replay prevention

Secure Storage
Component gen 2

DPA protection and
lockable seed bits

OS-bound keys and
Boot Monitor

19Apple Platform Security

Face ID and Touch ID

Face ID and Touch ID security
Passcodes and passwords are essential to the security of Apple devices. At the same time,
users require convenient access to their devices, often more than a hundred times a day.
Biometric authentication provides a way to retain the security of a strong passcode—or
even strengthen the passcode or password because it need not be entered manually—
while providing the convenience of swiftly unlocking with a finger press or glance. Face ID
and Touch ID don’t replace a passcode or password, but in most situations they do make
access faster and easier.

Apple’s biometric security architecture relies on a strict separation of responsibilities
between the biometric sensor and the Secure Enclave, and a secure connection between
the two. The sensor captures the biometric image and securely transmits it to the Secure
Enclave. During enrollment, the Secure Enclave processes, encrypts, and stores the
corresponding Face ID and Touch ID template data. During matching, the Secure Enclave
compares incoming data from the biometric sensor against the stored templates to
determine whether to unlock the device or respond that a match is valid (for Apple Pay,
in-app, and other uses of Face ID and Touch ID). The architecture supports devices
that include both the sensor and Secure Enclave (such as iPhone, iPad, and many Mac
systems), as well as the ability to physically separate the sensor into a peripheral that is
then securely paired to the Secure Enclave in a Mac with Apple silicon.

20Apple Platform Security

Face ID security
With a simple glance, Face ID securely unlocks supported Apple devices. It provides
intuitive and secure authentication enabled by the TrueDepth camera system, which uses
advanced technologies to accurately map the geometry of a user’s face. Face ID uses
neural networks for determining attention, matching, and antispoofing, so a user can
unlock their phone with a glance, even with a mask on when using supported devices.
Face ID automatically adapts to changes in appearance, and carefully safeguards the
privacy and security of a user’s biometric data.

Face ID is designed to confirm user attention, provide robust authentication with a low
false-match rate, and mitigate both digital and physical spoofing.

The TrueDepth camera automatically looks for the user’s face when the user wakes an
Apple device that features Face ID (by raising it or tapping the screen), as well as when
those devices attempt to authenticate the user to display an incoming notification or
when a supported app requests Face ID authentication. When a face is detected, Face ID
confirms attention and intent to unlock by detecting that the user’s eyes are open and
their attention is directed at their device; for accessibility, the Face ID attention check is
disabled when VoiceOver is activated and, if required, can be disabled separately.
Attention detection is always required when using Face ID with a mask.

After the TrueDepth camera confirms the presence of an attentive face, it projects and
reads thousands of infrared dots to form a depth map of the face along with a 2D infrared
image. This data is used to create a sequence of 2D images and depth maps, which are
digitally signed and sent to the Secure Enclave. To counter both digital and physical
spoofs, the TrueDepth camera randomizes the sequence of 2D images and depth map
captures, and projects a device-specific random pattern. A portion of the Secure Neural
Engine—protected within the Secure Enclave—transforms this data into a mathematical
representation and compares that representation to the enrolled facial data. This enrolled
facial data is itself a mathematical representation of the user’s face captured across a
variety of poses.

21Apple Platform Security

Touch ID security
Touch ID is the fingerprint sensing system that makes secure access to supported Apple
devices faster and easier. This technology reads fingerprint data from any angle and
learns more about a user’s fingerprint over time, with the sensor continuing to expand the
fingerprint map as additional overlapping nodes are identified with each use.

Apple devices with a Touch ID sensor can be unlocked using a fingerprint. Touch ID doesn’t
replace the need for a device passcode or user password, which is still required after
device startup, restart, or logout (on a Mac). In some apps, Touch ID can also be used in
place of a device passcode or user password—for example, to unlock password-protected
notes in the Notes app, to unlock keychain-protected websites, and to unlock supported
app passwords. However, a device passcode or user password is always required in some
scenarios (for example, to change an existing device passcode or user password or to
remove existing fingerprint enrollments or create new ones).

When the fingerprint sensor detects the touch of a finger, it triggers the advanced imaging
array to scan the finger and sends the scan to the Secure Enclave. The channel used to
secure this connection varies, depending on whether the Touch ID sensor is built into the
device with the Secure Enclave or is located in a separate peripheral.

While the fingerprint scan is being vectorized for analysis, the raster scan is temporarily
stored in encrypted memory within the Secure Enclave and then it’s discarded.
The analysis uses subdermal ridge flow angle mapping, a lossy process that discards
“finger minutiae data” that would be required to reconstruct the user’s actual fingerprint.
During enrollment, the resulting map of nodes is stored in an encrypted format that can be
read only by the Secure Enclave as a template to compare against for future matches,
but without any identity information. This data never leaves the device. It’s not sent to
Apple, nor is it included in device backups.

Built-in Touch ID channel security
Communication between the Secure Enclave and the built-in Touch ID sensor takes place
over a serial peripheral interface bus. The processor forwards the data to the Secure
Enclave but can’t read it. It’s encrypted and authenticated with a session key that’s
negotiated using a shared key provisioned for each Touch ID sensor and its corresponding
Secure Enclave at the factory. For every Touch ID sensor, the shared key is strong, random,
and different. The session key exchange uses AES key wrapping, with both sides providing
a random key that establishes the session key and uses transport encryption that provides
both authentication and confidentiality (using AES-CCM).

22Apple Platform Security

Magic Keyboard with Touch ID
The Magic Keyboard with Touch ID (and the Magic Keyboard with Touch ID and Numeric
Keypad) provides a Touch ID sensor in an external keyboard that can be used with any Mac
with Apple silicon. The Magic Keyboard with Touch ID performs the role of the biometric
sensor; it doesn’t store biometric templates, perform biometric matching, or enforce
security policies (for example, having to enter the password after 48 hours without an
unlock). The Touch ID sensor in the Magic Keyboard with Touch ID must be securely paired
to the Secure Enclave on the Mac before it can be used, and then the Secure Enclave
performs the enrollment and matching operations and enforces security policies in the
same way it would for a built-in Touch ID sensor. Apple performs the pairing process in
the factory for a Magic Keyboard with Touch ID that’s shipped with a Mac. Pairing can
also be performed by the user if needed. A Magic Keyboard with Touch ID can be securely
paired with only one Mac at a time, but a Mac can maintain secure pairings with up to five
different Magic Keyboard with Touch ID keyboards.

The Magic Keyboard with Touch ID and built-in Touch ID sensors are compatible. If a finger
that was enrolled on a built-in Mac Touch ID sensor is presented on a Magic Keyboard
with Touch ID, the Secure Enclave in the Mac successfully processes the match—and vice
versa.

To support secure pairing and thus communication between the Mac Secure Enclave and
the Magic Keyboard with Touch ID, the keyboard is equipped with a hardware Public Key
Accelerator (PKA) block, to provide attestation, and with hardware-based keys, to perform
the necessary cryptographic processes.

Secure pairing
Before a Magic Keyboard with Touch ID can be used for Touch ID operations, it needs to
be securely paired to the Mac. To pair, the Secure Enclave on the Mac and the PKA block
in the Magic Keyboard with Touch ID exchange public keys, rooted in the trusted Apple
CA, and they use hardware-held attestation keys and ephemeral ECDH to securely attest
to their identity. On the Mac, this data is protected by the Secure Enclave; on the Magic
Keyboard with Touch ID, this data is protected by the PKA block. After secure pairing,
all Touch ID data communicated between the Mac and the Magic Keyboard with Touch ID
is encrypted by AES-GCM with a key length of 256 bits, and with ephemeral ECDH keys
using NIST P-256 curve based on the stored identities. For more information on using the
keyboard in wireless mode, see Bluetooth security.

Secure intent to pair
To perform some Touch ID operations for the first time, such as enrolling a new fingerprint,
the user must physically confirm their intent to use a Magic Keyboard with Touch ID
with the Mac. Physical intent is confirmed by pressing twice on the Mac power button
when indicated by the user interface, or by successfully matching a fingerprint that
had previously been enrolled with the Mac. For more information, see Secure intent and
connections to the Secure Enclave.

Apple Pay transactions can be authorized with a Touch ID match or by entering the macOS
user password and pressing twice on the Touch ID button on the Magic Keyboard with
Touch ID. The latter allows the user to confirm physical intent even without a Touch ID
match.

23Apple Platform Security

Magic Keyboard with Touch ID channel security
To help ensure a secure communication channel between the Touch ID sensor in the Magic
Keyboard with Touch ID and Secure Enclave on the paired Mac, the following are required:

•	 The secure pairing between the Magic Keyboard with Touch ID PKA block and the
Secure Enclave as described above

•	 A secure channel between the Magic Keyboard with Touch ID sensor and its PKA block

The secure channel between the Magic Keyboard with Touch ID sensor and its PKA block is
established in the factory by using a unique key shared between the two. (This is the same
technique used to create the secure channel between the Secure Enclave on the Mac and
its built-in sensor, for Mac computers with Touch ID built-in.)

Face ID, Touch ID, passcodes, and passwords
To use Face ID or Touch ID, the user must set up their device so that a passcode or
password is required to unlock it. When Face ID or Touch ID detects a successful match,
the user’s device unlocks without asking for the device passcode or password. This makes
using a longer, more complex passcode or password far more practical because the user
doesn’t need to enter it as frequently. Face ID and Touch ID don’t replace the user’s
passcode or password; instead, they provide easy access to the device within thoughtful
boundaries and time constraints. This is important because a strong passcode or password
forms the foundation for how a user’s iPhone, iPad, Mac, or Apple Watch cryptographically
protects that user’s data.

24Apple Platform Security

When a device passcode or password is required
Users can use their passcode or password anytime instead of Face ID or Touch ID,
but there are situations where biometrics aren’t permitted. The following security-sensitive
operations always require entry of a passcode or password:

•	 Updating the software

•	 Erasing the device

•	 Viewing or changing passcode settings

•	 Installing configuration profiles

•	 Unlocking the Privacy & Security pane in System Settings (macOS 13 or later) on Mac

•	 Unlocking the Security & Privacy pane in System Preferences (macOS 12 or earlier)
on Mac

•	 Unlocking the Users & Groups pane in System Settings (macOS 13 or later) on Mac
(if FileVault is turned on)

•	 Unlocking the Users & Groups pane in System Preferences (macOS 12 or earlier)
on Mac (if FileVault is turned on)

A passcode or password is also required if the device is in any of the following states:

•	 The device has just been turned on or restarted.

•	 The user has logged out of their Mac account (or hasn’t yet logged in).

•	 The user hasn’t unlocked their device for more than 48 hours.

•	 The user hasn’t used their passcode or password to unlock their device for 156 hours
(six and a half days), and the user hasn’t used a biometric to unlock their device in
4 hours.

•	 The device has received a remote lock command.

•	 The user exited power off/Emergency SOS by pressing and holding either volume button
and the Sleep/Wake button simultaneously for 2 seconds and then pressing Cancel.

•	 There were five unsuccessful biometric match attempts (though for usability, the device
might offer entering a passcode or password instead of using biometrics after a smaller
number of failures).

When Face ID with a mask is enabled on an iPhone, it’s available for the next 6.5 hours
after one of the following user actions:

•	 Successful Face ID match attempt (with or without a mask)

•	 Device passcode validation

•	 Device unlock with Apple Watch

Any of these actions extends the period an additional 6.5 hours when performed.

25Apple Platform Security

When Face ID or Touch ID is enabled on an iPhone or iPad, the device immediately locks
when the Sleep/Wake button is pressed, and the device locks every time it goes to sleep.
Face ID and Touch ID require a successful match—or optionally use of the passcode—at
every wake.

The probability that a random person in the population could unlock a user’s iPhone or
iPad is less than 1 in 1,000,000 with Face ID—including when Face ID with a mask is turned
on. For a user’s iPhone, iPad, Mac models with Touch ID and those paired with a Magic
Keyboard, it’s less than 1 in 50,000. This probability increases with multiple enrolled
fingerprints (up to 1 in 10,000 with five fingerprints) or appearances (up to 1 in 500,000
with two appearances). For additional protection, both Face ID and Touch ID allow only five
unsuccessful match attempts before a passcode or password is required to obtain access
to the user’s device or account. With Face ID, the probability of a false match is higher for:

•	 Twins and siblings who look like the user

•	 Children under the age of 13 (because their distinct facial features may not have fully
developed)

The probability is further increased in these two cases when Face ID with a mask is used.
If a user is concerned about a false match, Apple recommends using a passcode to
authenticate.

26Apple Platform Security

Facial matching security
Facial matching is performed within the Secure Enclave using neural networks trained
specifically for that purpose. Apple developed the facial matching neural networks
using over a billion images, including infrared (IR) and depth images collected in studies
conducted with the participants’ informed consent. Apple then worked with participants
from around the world to include a representative group of people accounting for gender,
age, ethnicity, and other factors. The studies were augmented as needed to provide a
high degree of accuracy for a diverse range of users. Face ID is designed to work with
hats, scarves, eyeglasses, contact lenses, and many types of sunglasses. Face ID also
supports unlocking with a mask on iPhone devices starting with iPhone 12 and iOS 15.4
or later. Furthermore, it’s designed to work indoors, outdoors, and even in total darkness.
An additional neural network—that’s trained to spot and resist spoofing—defends against
attempts to unlock the device with photos or masks. Face ID data, including mathematical
representations of a user’s face, is encrypted and available only to the Secure Enclave.
This data never leaves the device. It’s not sent to Apple, nor is it included in device
backups. The following Face ID data is saved, encrypted only for use by the Secure
Enclave, during normal operation:

•	 The mathematical representations of a user’s face calculated during enrollment

•	 The mathematical representations of a user’s face calculated during some unlock
attempts if Face ID deems them useful to augment future matching

Face images captured during normal operation aren’t saved but are instead immediately
discarded after the mathematical representation is calculated for either enrollment in
Face ID or comparison with enrolled Face ID data.

Improving Face ID matches
To improve match performance and keep pace with the natural changes of a face and look,
Face ID augments its stored mathematical representation over time. Upon a successful
match, Face ID may use the newly calculated mathematical representation—if its quality
is sufficient—for a finite number of additional matches before that data is discarded.
Conversely, if Face ID fails to recognize a face but the match quality is higher than a certain
threshold and a user immediately follows the failure by entering their passcode, Face ID
takes another capture and augments its enrolled Face ID data with the newly calculated
mathematical representation. This new Face ID data is discarded if the user stops matching
against it or after a finite number of matches; the new data is also discarded when the
option to reset Face ID is selected. These augmentation processes allow Face ID to keep
up with dramatic changes in a user’s facial hair or makeup use while minimizing false
acceptance.

27Apple Platform Security

Uses for Face ID and Touch ID

Unlocking a device or user account
With Face ID or Touch ID turned off, when a device or account locks, the keys for the
highest class of Data Protection—which are held in the Secure Enclave—are discarded.
The files and keychain items in that class are inaccessible until the user unlocks the device
or account by entering their passcode or password.

With Face ID or Touch ID turned on, the keys aren’t discarded when the device or
account locks; instead, they’re wrapped with a key that’s given to the Face ID or Touch ID
subsystem inside the Secure Enclave. When a user attempts to unlock the device or
account, if the device detects a successful match, it provides the key for unwrapping
the Data Protection keys, and the device or account is unlocked. This process provides
additional protection by requiring cooperation between the Data Protection and Face ID or
Touch ID subsystems to unlock the device.

When the device restarts, the keys required for Face ID or Touch ID to unlock the device or
account are lost; they’re discarded by the Secure Enclave after any condition is met that
requires passcode or password entry.

Securing purchases with Apple Pay
The user can also use Face ID and Touch ID with Apple Pay to make easy and secure
purchases in stores, apps, and on the web:

•	 Using Face ID in stores: To authorize an in-store payment with Face ID, the user
must first confirm intent to pay by double-clicking the side button. This double-click
captures user intent using a physical gesture directly linked to the Secure Enclave
and is resistant to forgery by a malicious process. The user then authenticates using
Face ID before placing the device near the contactless payment reader. A different
Apple Pay payment method can be selected after Face ID authentication, which requires
reauthentication, but the user won’t have to double-click the side button again.

•	 Using Face ID in apps and on the web: To make a payment within apps and on the
web, the user confirms their intent to pay by double-clicking the side button and then
authenticates using Face ID to authorize the payment. If the Apple Pay transaction
isn’t completed within 60 seconds of double-clicking the side button, the user must
reconfirm intent to pay by double-clicking again.

•	 Using Touch ID: For Touch ID, the intent to pay is confirmed using the gesture of
activating the Touch ID sensor combined with successfully matching the user’s
fingerprint.

Using system-provided APIs
Third-party apps can use system-provided APIs to ask the user to authenticate using
Face ID or Touch ID or a passcode or password, and apps that support Touch ID
automatically support Face ID without any changes. When using Face ID or Touch ID,
the app is notified only as to whether the authentication was successful; it can’t access
Face ID, Touch ID, or the data associated with the enrolled user.

28Apple Platform Security

Protecting keychain items
Keychain items can also be protected with Face ID or Touch ID, to be released by the
Secure Enclave only by a successful match or with the device passcode or account
password. App developers have APIs to verify that a passcode or password has been set
by the user before requiring Face ID or Touch ID or a passcode or password to unlock
keychain items. App developers can do any of the following:

•	 Require that authentication API operations don’t fall back to an app password or the
device passcode. They can query whether a user is enrolled, allowing Face ID or
Touch ID to be used as a second factor in security-sensitive apps.

•	 Generate and use Elliptic Curve Cryptography (ECC) keys inside the Secure Enclave
that can be protected by Face ID or Touch ID. Operations with these keys are always
performed inside the Secure Enclave after it authorizes their use.

Making and approving purchases
Users can also configure Face ID or Touch ID to approve purchases from the iTunes
Store, the App Store, Apple Books, and more, so users donʼt have to enter their Apple ID
password. When purchases are made, the Secure Enclave verifies that a biometric
authorization occurred and then releases ECC keys used to sign the store request.

Secure intent and connections to the Secure Enclave
Secure intent provides a way to confirm a user’s intent without any interaction with the
operating system or Application Processor. The connection is a physical link—from a
physical button to the Secure Enclave—that’s available in the following:

•	 iPhone X or later

•	 Apple Watch Series 1 or later

•	 iPad Pro (all models)

•	 iPad Air (2020)

•	 Mac computers with Apple silicon

With this link, users can confirm their intent to complete an operation in a way designed
such that even software running with root privileges or in the kernel can’t spoof.

This feature is used to confirm user intent during Apple Pay transactions and when
finalizing pairing Magic Keyboard with Touch ID to a Mac with Apple silicon. A double-press
on the appropriate button (for Face ID) or a fingerprint scan (for Touch ID) when prompted
by the user interface signals confirmation of user intent. For more information, see
Securing purchases with Apple Pay. A similar mechanism—based on the Secure Enclave
and T2 firmware—is supported on MacBook models with the Apple T2 Security Chip and no
Touch Bar.

29Apple Platform Security

Hardware microphone disconnect
All Apple silicon-based Mac notebooks and Intel-based Mac notebooks with the Apple T2
Security Chip feature a hardware disconnect that disables the microphone whenever the
lid is closed. On all 13-inch MacBook Pro and MacBook Air notebooks with the T2 chip,
all MacBook notebooks with a T2 chip from 2019 or later, and Mac notebooks with Apple
silicon, this disconnect is implemented in hardware alone. The disconnect is designed to
prevent any software—even with root or kernel privileges in macOS, and even the software
on the T2 chip or other firmware—from engaging the microphone when the lid is closed.
(The camera isn’t disconnected in hardware, because its field of view is completely
obstructed with the lid closed.)

iPad models beginning in 2020 also feature the hardware microphone disconnect. When
an MFi-compliant case (including those sold by Apple) is attached to the iPad and closed,
the microphone is disconnected in hardware. This is designed to prevent microphone audio
data being made available to any software—even with root or kernel privileges in iPadOS,
or any device firmware.

The protections in this section are implemented directly with hardware logic, according to
the following circuit diagram:

In each product with a hardware microphone cutoff, one or more lid sensors detect the
physical closure of the lid or case using some physical property (for example, a Hall
effect sensor or a hinge angle sensor) of the interaction. For sensors where calibration
is necessary, parameters are set during production of the device and the calibration
process includes a nonreversible hardware lock out of any subsequent changes to
sensitive parameters on the sensor. These sensors emit a direct hardware signal that goes
through a simple set of nonreprogrammable hardware logic. This logic provides debounce,
hysteresis, and/or a delay of up to 500 ms before disabling the microphone. Depending on
the product, this signal can be implemented either by disabling the lines transporting data
between the microphone and the System on Chip (SoC) or by disabling one of the input
lines to the microphone module that’s allowing it to be active—for example, the clock line
or a similar effective control.

30Apple Platform Security

Express Cards with power reserve
If iOS isn’t running because iPhone needs to be charged, there may still be enough
power in the battery to support Express Card transactions. Supported iPhone devices
automatically support this feature with:

•	 A payment or transit card designated as the Express Transit card

•	 Access cards with Express Mode turned on

When the side button is pressed, the battery icon shows that power is low, and text
indicates that Express Cards are available to use. The NFC controller performs Express
Card transactions under the same conditions as when iOS is running, except that
transactions are indicated only with haptic notifications (no visible notification is shown).
On iPhone SE 2nd generation, completed transactions may take a few seconds to
appear on screen. This feature isn’t available when a standard user-initiated shutdown is
performed.

31Apple Platform Security

System security

System security overview
Building on the unique capabilities of Apple hardware, system security is responsible for
controlling access to system resources in Apple devices without compromising usability.
System security encompasses the boot-up process, software updates, and protection
of computer system resources such as CPU, memory, disk, software programs, and
stored data.

The most recent versions of Apple operating systems are the most secure. An important
part of Apple security is secure boot, which protects the system from malware infection
at boot time. Secure boot begins in silicon and builds a chain of trust through software,
where each step is designed to ensure that the next is functioning properly before handing
over control. This security model supports not only the default boot of Apple devices but
also the various modes for recovery and timely updates on Apple devices. Subcomponents
like the Secure Enclave also perform their own secure boot to help ensure they only boot
known-good code from Apple. The update system is designed to prevent downgrade
attacks, so that devices can’t be rolled back to an older version of the operating system
(which an attacker knows how to compromise) as a method of stealing user data.

Apple devices also include boot and runtime protections so that they maintain their
integrity during ongoing operation. Apple-designed silicon on iPhone, iPad, a Mac with
Apple silicon, Apple Watch, Apple TV, and HomePod provide a common architecture for
protecting operating system integrity. macOS also features an expanded and configurable
set of protection capabilities in support of its differing computing model, as well as
capabilities supported on all Mac hardware platforms.

32Apple Platform Security

Secure boot

Boot process for iPhone and iPad devices
Each step of the startup process contains components that are cryptographically signed by
Apple to enable integrity checking so that boot proceeds only after verifying the chain of
trust. These components include the bootloaders, the kernel, kernel extensions,
and cellular baseband firmware. This secure boot chain is designed to verify that the
lowest levels of software aren’t tampered with.

When an iPhone and iPad device is turned on, its Application Processor immediately
executes code from read-only memory referred to as Boot ROM. This immutable code,
known as the hardware root of trust, is laid down during chip fabrication and is implicitly
trusted. The Boot ROM code contains the Apple Root certificate authority (CA) public key—
used to verify that the iBoot bootloader is signed by Apple before allowing it to load.
This is the first step in the chain of trust, in which each step checks that the next is signed
by Apple. When the iBoot finishes its tasks, it verifies and runs the iOS or iPadOS kernel.
For devices with an A9 or earlier A-series processor, an additional Low-Level Bootloader
(LLB) stage is loaded and verified by the Boot ROM and in turn loads and verifies iBoot.

A failure to load or verify following stages is handled differently depending on the
hardware:

•	 Boot ROM can’t load LLB (older devices): Device Firmware Upgrade (DFU) mode

•	 LLB or iBoot: Recovery mode

In either case, the device must be connected to the Finder (macOS 10.15 or later) or iTunes
(in macOS 10.14 or earlier) through USB and restored to factory default settings.

The Boot Progress Register (BPR) is used by the Secure Enclave to limit access to user
data in different modes and is updated before entering the following modes:

•	 DFU mode: Set by Boot ROM on devices with an Apple A12 or later SoCs

•	 Recovery mode: Set by iBoot on devices with Apple A10, S2, or later SoCs

On devices with cellular access, a cellular baseband subsystem performs additional secure
booting using signed software and keys verified by the baseband processor.

The Secure Enclave also performs a secure boot that checks its software (sepOS) is
verified and signed by Apple.

33Apple Platform Security

Memory safe iBoot implementation
In iOS 14 and iPadOS 14 or later, Apple modified the C compiler toolchain used to build the
iBoot bootloader to improve its security. The modified toolchain implements code designed
to prevent memory- and type-safety issues that are typically encountered in C programs.
For example, it helps prevent most vulnerabilities in the following classes:

•	 Buffer overflows, by ensuring that all pointers carry bounds information that is verified
when accessing memory

•	 Heap exploitation, by separating heap data from its metadata and accurately detecting
error conditions such as double free errors

•	 Type confusion, by ensuring that all pointers carry runtime type information that’s
verified during pointer cast operations

•	 Type confusion caused by use after free errors, by segregating all dynamic memory
allocations by static type

This technology is available on iPhone with the A13 Bionic chip or later, and on iPad with
the A14 Bionic chip or later.

Mac computers with Apple silicon

Boot process for a Mac with Apple silicon

When a Mac with Apple silicon is turned on, it performs a boot process much like that of
iPhone and iPad.

The chip executes code from the Boot ROM in the first step in the chain of trust. macOS
secure boot on a Mac with Apple silicon verifies not only the operating system code itself,
but also the security policies and even kexts (supported, though not recommended)
configured by authorized users.

34Apple Platform Security

When LLB (which stands for Low Level Bootloader) is launched, it then verifies the
signatures and loads system-paired firmware for intra-SoC cores such as the storage,
display, system management, and Thunderbolt controllers. LLB is also responsible for
loading the LocalPolicy, which is a file signed by the Secure Enclave Processor.
The LocalPolicy file describes the configuration that the user has chosen for the system
boot and runtime security policies. The LocalPolicy has the same data structure format as
all other boot objects, but it’s signed locally by a private key that’s available only within
a particular computer’s Secure Enclave instead of being signed by a central Apple server
(like software updates).

To help prevent replay of any previous LocalPolicy, LLB must look up an anti-replay
value from the Secure Enclave–attached Secure Storage Component. To do this, it uses
the Secure Enclave Boot ROM and makes sure the anti-replay value in the LocalPolicy
matches the anti-replay value in the Secure Storage Component. This helps prevent an old
LocalPolicy—which could have been configured for lower security—from being reapplied to
the system after security has been upgraded. The result is that secure boot on a Mac with
Apple silicon helps protect not only against rollback of operating system versions but also
against security policy downgrades.

The LocalPolicy file captures whether the operating system is configured for Full, Reduced,
or Permissive security.

•	 Full Security: The system behaves like iOS and iPadOS, and allows only booting
software which was known to be the latest that was available at install time.

•	 Reduced Security: LLB is directed to trust “global” signatures, which are bundled with
the operating system. This allows the system to run older versions of macOS. Because
older versions of macOS inevitably have unpatched vulnerabilities, this security mode
is described as Reduced. This is also the policy level required to support booting kernel
extensions (kexts).

•	 Permissive Security: The system behaves like Reduced Security in that it uses global
signature verification for iBoot and beyond, but it also tells iBoot that it should accept
some boot objects being signed by the Secure Enclave with the same key used to sign
the LocalPolicy. This policy level supports users that are building, signing, and booting
their own custom XNU kernels.

If the LocalPolicy indicates to LLB that the selected operating system is running in Full
Security, LLB evaluates the personalized signature for iBoot. If it’s running in Reduced
Security or Permissive Security, it evaluates the global signature. Any signature verification
errors cause the system to boot to recoveryOS to provide repair options.

After LLB hands off to iBoot, it loads macOS-paired firmware such as that for the
Secure Neural Engine, the Always On Processor, and other firmware. iBoot also looks at
information about the LocalPolicy handed to it from LLB. If the LocalPolicy indicates that
there should be an Auxiliary Kernel Collection (AuxKC), iBoot looks for it on the file system,
verifies that it was signed by the Secure Enclave with the same key as the LocalPolicy,
and verifies that its hash matches a hash stored in the LocalPolicy. If the AuxKC is verified,
iBoot places it into memory with the Boot Kernel Collection before locking the full memory
region covering the Boot Kernel Collection and AuxKC with the System Coprocessor
Integrity Protection (SCIP). If the policy indicates that an AuxKC should be present but it
isn’t found, the system continues to boot into macOS without it. iBoot is also responsible
for verifying the root hash for the signed system volume (SSV), to check that the file
system the kernel will mount is fully integrity verified.

35Apple Platform Security

Boot modes for a Mac with Apple silicon

A Mac with Apple silicon has the boot modes described below.

Mode Key combo Description

macOS From a shutdown state, press and
release the power button.

1.	 Boot ROM hands off to LLB.

2.	LLB loads system-paired firmware and the
LocalPolicy for the selected macOS.

3.	LLB locks an indication into the Boot Progress
Register (BPR) that it’s booting into macOS, and
hands off to iBoot.

4.	iBoot loads the macOS-paired firmware, the static
trust cache, the device tree, and the Boot Kernel
Collection.

5.	If the LocalPolicy allows it, iBoot loads the Auxiliary
Kernel Collection (AuxKC) of third-party kexts.

6.	If the LocalPolicy didn’t disable it, iBoot verifies the
root signature hash for the signed system volume
(SSV).

Paired
recoveryOS

From a shutdown state, press and
hold the power button.

1.	 Boot ROM hands off to LLB.

2.	LLB loads system-paired firmware and the
LocalPolicy for the recoveryOS.

3.	LLB locks an indication into the Boot Progress
Register that it’s booting into paired recoveryOS,
and hands off to iBoot for paired recoveryOS.

4.	iBoot loads the macOS-paired firmware, the
trust cache, the device tree, and the Boot Kernel
Collection.

5.	If paired recoveryOS boot fails, booting into fallback
recoveryOS is attempted.

Fallback
recoveryOS

From a shutdown state, double-
press and hold the power button.

1.	 Boot ROM hands off to LLB.

2.	LLB loads system-paired firmware and the
LocalPolicy for the recoveryOS.

3.	LLB locks an indication into the Boot Progress
Register that it’s booting into paired recoveryOS,
and hands off to iBoot for recoveryOS.

4.	iBoot loads the macOS-paired firmware, the
trust cache, the device tree, and the Boot Kernel
Collection.

Safe mode Boot into recoveryOS per the above,
then hold Shift while selecting the
startup volume.

1.	 Boots to recoveryOS as per the above.

2.	Holding the Shift key while selecting a volume
causes the BootPicker app to approve that macOS
for booting, as normal; it also sets an nvram variable
that tells iBoot to not load the AuxKC on the next
boot.

3.	System restarts and boots to the targeted volume,
but iBoot doesn’t load AuxKC.

36Apple Platform Security

Paired recoveryOS restrictions

In macOS 12.0.1 or later, every new macOS installation also installs a paired version of
recoveryOS into the corresponding APFS volume group. This design is familiar to users
of Intel-based Mac computers, but on a Mac with Apple silicon, it provides additional
security and compatibility guarantees. Because every macOS installation now has a
dedicated paired recoveryOS, this helps ensure that only that dedicated paired recoveryOS
can perform security-downgrading operations. This helps protect installations of newer
versions of macOS from tampering initiated from older versions of macOS, and vice versa.

The pairing restrictions are enforced as follows:

•	 All installations of macOS 11 are paired to the recoveryOS. If a macOS 11 installation is
selected to boot by default, the recoveryOS is booted by holding down the power key at
boot time on a Mac with Apple silicon. The recoveryOS can downgrade security settings
of any macOS 11 installations, but not any installations of macOS 12.0.1.

•	 If a macOS 12.0.1 or later installation is selected to boot by default, its paired
recoveryOS is booted by holding down the power key when the Mac starts up.
The paired recoveryOS can downgrade security settings for the paired macOS
installation, but not for any other macOS installation.

To boot into a paired recoveryOS for any macOS installation, that installation needs to be
selected as the default, which is done using General > Startup Disk in System Settings
(macOS 13 or later), Startup Disk in System Preferences (macOS 12 or earlier), or by
starting any recoveryOS and holding Option while selecting a volume.

Note: Fallback recoveryOS can’t perform downgrades for any macOS installations.

37Apple Platform Security

Startup Disk security policy control for a Mac with Apple silicon

Overview
Unlike security policies on an Intel-based Mac, security policies on a Mac with Apple
silicon are for each installed operating system. This means that multiple installed macOS
instances with different versions and security policies are supported on the same Mac.
For this reason, an operating system picker has been added to Startup Security Utility.

On a Mac with Apple silicon, System Security Utility indicates the overall user-configured
security state of macOS, such as the booting of a kext or the configuration of System
Integrity Protection (SIP). If changing a security setting would significantly degrade
security or make the system easier to compromise, users must enter into recoveryOS
by holding the power button (so that malware can’t trigger the signal, only a human with
physical access can) to make the change. Because of this, an Apple-silicon based Mac also
won’t require (or support) a firmware password—all critical changes are already gated by
user authorization. For more information on SIP, see System Integrity Protection.

Full Security and Reduced Security can be set using Startup Security Utility from
recoveryOS. But Permissive Security can be accessed only from command-line tools for
users who accept the risk of making their Mac much less secure.

38Apple Platform Security

Full Security policy
Full Security is the default, and it behaves like iOS and iPadOS. At the time software is
downloaded and prepared to install, rather than using the global signature that comes with
the software, macOS contacts the same Apple signing server used for iOS and iPadOS and
requests a fresh, “personalized” signature. A signature is personalized when it includes the
Exclusive Chip Identification (ECID)—a unique ID specific to the Apple CPU in this case—as
part of the signing request. The signature given back by the signing server is then unique
and usable only by that particular Apple CPU. When the Full Security policy is in effect,
the Boot ROM and LLB helps ensure that a given signature isn’t just signed by Apple but is
signed for this specific Mac, essentially tying that version of macOS to that Mac.

Using an online signing server also provides better protection against rollback attacks
than typical global signature approaches. In a global signing system, the security epoch
could have rolled many times, but a system that has never seen the latest firmware won’t
know this. For example, a computer that currently believes it’s in security epoch 1 accepts
software from security epoch 2, even if the current actual security epoch is 5. With an
Apple silicon online signing system, the signing server can reject creating signatures for
software that’s in anything except the latest security epoch.

Additionally, if an attacker discovers a vulnerability after a security epoch change,
they can’t simply pick up the vulnerable software from a previous epoch off system A and
apply it to system B in order to attack it. The fact that the vulnerable software from an
older epoch was personalized to system A helps prevent it from being transferable and
thus being used to attack a system B. All these mechanisms work together to provide much
stronger guarantees that attackers can’t purposely place vulnerable software on a Mac to
circumvent the protections provided by the latest software. But a user that’s in possession
of an administrator user name and password for the Mac can always choose the security
policy that works best for their use cases.

39Apple Platform Security

Reduced Security policy
Reduced Security is similar to Medium Security behavior on an Intel-based Mac with a
T2 chip, in which a vendor (in this case, Apple) generates a digital signature for the code
to assert it came from the vendor. This design helps prevent attackers from inserting
unsigned code. Apple refers to this signature as a “global” signature because it can be
used on any Mac, for any amount of time, for a Mac that currently has a Reduced Security
policy set. Reduced security doesn’t itself provide protection against rollback attacks
(although unauthorized operating system changes can result in user data being rendered
inaccessible. For more information, see Kernel extensions in a Mac with Apple silicon.

In addition to enabling users to run older versions of macOS, Reduced Security is required
for other actions that can put a user’s system security at risk, such as introducing third-
party kernel extensions (kexts). Kexts have the same privileges as the kernel, and thus any
vulnerabilities in third-party kexts can lead to full operating system compromise.
This is why developers are being strongly encouraged to adopt system extensions before
kext support is removed from macOS for future Mac computers with Apple silicon.
Even when third-party kexts are enabled, they can’t be loaded into the kernel on demand.
Instead, the kexts are merged into an Auxiliary Kernel Collection (AuxKC)—whose hash
is stored in the LocalPolicy—and thus they require a restart. For more information about
AuxKC generation, see Securely extending the kernel.

40Apple Platform Security

Permissive Security policy
Permissive Security is for users who accept the risk of putting their Mac into a much more
insecure state. This mode differs from No Security mode on an Intel-based Mac with a T2
chip. With Permissive Security, signature verification is still performed along the entire
secure boot chain, but setting the policy to Permissive signals to iBoot that it should
accept locally Secure Enclave–signed boot objects, such as a user-generated Boot Kernel
Collection built from a custom XNU kernel. In this way, Permissive Security also provides an
architectural capability for running an arbitrary “fully untrusted operating system” kernel.
When a custom Boot Kernel Collection or fully untrusted operating system is loaded on
the system, some decryption keys become unavailable. This is designed to prevent a fully
untrusted operating systems from accessing data from trusted operating systems.

Important: Apple doesn’t provide or support custom XNU kernels.

There’s another way that Permissive Security differs from No Security on an Intel-based
Mac with a T2 chip: It’s a prerequisite for some security downgrades that in the past have
been independently controllable. Most notably, to disable System Integrity Protection (SIP)
on a Mac with Apple silicon, a user must acknowledge that they’re putting the system into
Permissive Security. This is required because disabling SIP has always put the system into
a state that makes the kernel much easier to compromise. In particular, disabling SIP on a
Mac with Apple silicon disables kext signature enforcement during AuxKC generation time,
thus allowing any arbitrary kext to be loaded into kernel memory. Another improvement to
SIP that’s been made on a Mac with Apple silicon is that the policy store has been moved
out of NVRAM and into the LocalPolicy. So now, disabling SIP requires authentication by a
user who has access to the LocalPolicy signing key from recoveryOS (reached by pressing
and holding the power button). This makes it significantly more difficult for a software-only
attacker, or even a physically present attacker, to disable SIP.

It isn’t possible to downgrade to Permissive Security from the Startup Security Utility app.
Users can downgrade only by running command-line tools from Terminal in recoveryOS,
such as csrutil (to disable SIP). After the user has downgraded, the fact that it’s
occurred is reflected in Startup Security Utility, and so a user can easily set the security to
a more secure mode.

41Apple Platform Security

Note: A Mac with Apple silicon doesn’t require or support a specific media boot policy,
because technically all boots are performed locally. If a user chooses to boot from external
media, that operating system version must first be personalized using an authenticated
restart from recoveryOS. This restart creates a LocalPolicy file on the internal drive that’s
used to perform a trusted boot from the operating system stored on the external media.
This means the configuration of starting from external media is always explicitly enabled
on a per operating system basis, and already requires user authorization, so no additional
secure configuration is necessary.

42Apple Platform Security

LocalPolicy signing-key creation and management

Creation
When macOS is first installed in the factory, or when a tethered erase-install is performed,
the Mac runs code from temporary restore RAM disk to initialize the default state. During
this process, the restore environment creates a new pair of public and private keys
which are held in the Secure Enclave. The private key is referred to as the Owner Identity
Key (OIK). If any OIK already exists, it’s destroyed as part of this process. The restore
environment also initializes the key used for Activation Lock; the User Identity Key (UIK).
Part of that process which is unique to a Mac with Apple silicon is when UIK certification is
requested for Activation Lock, a set of requested constraints to be enforced at validation-
time on the LocalPolicy are included. If the device can’t get a UIK certified for Activation
Lock (for example, because the device is currently associated with a Find My Mac account
and reported as lost), its unable to proceed further to create a Local Policy. If a device
is issued a User identity Certificate (ucrt), that ucrt contains server imposed policy
constraints and user requested policy constraints in an X.509 v3 extension.

When an Activation Lock/ucrt is successfully retrieved, it’s stored in a database on the
server side and also returned to the device. After the device has a ucrt, a certification
request for the public key which corresponds to the OIK is sent to the Basic Attestation
Authority (BAA) server. BAA verifies the OIK certification request using the public key from
the ucrt stored in the BAA accessible database. If the BAA can verify the certification,
it certifies the public key, returning the Owner Identity Certificate (OIC) which is signed
by the BAA and contains the constraints stored in ucrt. The OIC is sent back to the Secure
Enclave. From then on, whenever the Secure Enclave signs a new LocalPolicy, it attaches
the OIC to the Image4. LLB has built-in trust in the BAA root certificate, which causes it to
trust the OIC, which causes it to trust the overall LocalPolicy signature.

43Apple Platform Security

RemotePolicy constraints
All Image4 files, not just Local Policies, contain constraints on Image4 manifest evaluation.
These constraints are encoded using special object identifiers (OIDs) in the leaf certificate.
The Image4 verification library looks up the special certificate constraint OID from a
certificate during signature evaluation and then mechanically evaluates the constraints
specified in it. The constraints are of the form:

•	 X must exist

•	 X must not exist

•	 X must have a specific value

So, for instance, for “personalized” signatures, the certificate constraints will contain
“ECID must exist,” and for “global” signatures, it will contain “ECID must not exist.”
These constraints are designed to ensure that all Image4 files signed by a given key must
conform to certain requirements to avoid erroneous signed Image4 manifest generation.

In the context of each LocalPolicy, these Image4 certificate constraints are referred to
as the RemotePolicy. A different RemotePolicy can exist for different boot environments’
LocalPolicies. The RemotePolicy is used to restrict the recoveryOS LocalPolicy so that
when recoveryOS is booted it can only ever behave as if it’s booting with Full Security.
This increases trust in the integrity of the recoveryOS boot environment as a place where
policy can be changed. The RemotePolicy restricts the LocalPolicy to contain the ECID
of the Mac on which the LocalPolicy was generated, and the specific Remote Policy
Nonce Hash (rpnh) stored in the Secure Storage Component on that Mac. The rpnh, and
therefore the RemotePolicy, change only when actions are taken for Find My Mac and
Activation Lock, such as enrollment, unenrollment, remote lock, and remote wipe. Remote
Policy constraints are determined and specified at User Identity Key (UIK) certification
time and are signed in to the issued User identity Certificate (ucrt). Some Remote Policy
constraints, such as ECID, ChipID, and BoardID, are determined by the server. This is
designed to prevent one device from signing LocalPolicy files for another device. Other
Remote Policy constraints may be specified by the device to help prevent Security
downgrade of the Local Policy without providing both the local authentication required to
access the current OIK and remote authentication of the account to which the device is
Activation Locked.

Contents of a LocalPolicy file for a Mac with Apple silicon

The LocalPolicy is an Image4 file signed by the Secure Enclave. Image4 is an ASN.1
(Abstract Syntax Notation One) DER-encoded data structure format that’s used to describe
information about secure boot chain objects on Apple platforms. In an Image4-based
secure boot model, security policies are requested at software installation time initiated by
a signing request to a central Apple signing server. If the policy was acceptable,
the signing server returns a signed Image4 file containing a variety of four-character
code (4CC) sequences. These signed Image4 files and 4CCs are evaluated at startup by
software like the Boot ROM or LLB.

44Apple Platform Security

Ownership handoff between operating systems
Access to the Owner Identity Key (OIK) is referred to as “Ownership.” Ownership is required
to allow users to resign the LocalPolicy after making policy or software changes. The OIK is
protected with the same key hierarchy as described in Sealed Key Protection (SKP),
with the OIK being protected by the same Key encryption key (KEK) as the Volume
encryption key (VEK). This means it’s normally protected by both user passwords and
measurements of the operating system and policy. There’s only a single OIK for all
operating systems on the Mac. Therefore, when installing a second operating system,
explicit consent is required from the users on the first operating system to hand off
Ownership to the users on the second operating system. However, users don’t yet exist for
the second operating system, when the installer is running from the first operating system.
Users in operating systems aren’t normally generated until the operating system is booted
and the Setup Assistant is running. Thus two new actions are required when installing a
second operating system on a Mac with Apple silicon:

•	 Creating a LocalPolicy for the second operating system

•	 Preparing an “Install User” for handing off Ownership

When running an Install Assistant and targeting installation for a secondary blank volume,
a prompt asks the user if they’d like to copy a user from the current volume to be the first
user of the second volume. If the user says yes, the “Install User” which is created is,
in reality, a KEK which is derived from the selected user’s password and hardware keys,
which is then used to encrypt the OIK as it’s being handed to the second operating system.
Then from within the second operating system Install Assistant, it prompts for that user’s
password, to allow it to access the OIK in the Secure Enclave for the new operating system.
If users opt not to copy a user, the Install User is still created the same way, but an empty
password is used instead of a user’s password. This second flow exists for certain system
administration scenarios. However, users who want to have multivolume installs and want
to perform Ownership handoff in the most secure fashion should always opt to copy a user
from the first operating system to the second operating system.

LocalPolicy on a Mac with Apple silicon
For a Mac with Apple silicon, local security policy control has been delegated to an
application running in the Secure Enclave. This software can utilize the user’s credentials
and the boot mode of the primary CPU to determine who can change the security policy
and from what boot environment. This helps prevent malicious software from using the
security policy controls against the user by downgrading them to gain more privileges.

LocalPolicy manifest properties
The LocalPolicy file contains some architectural 4CCs that are found in most all Image4
files—such as a board or model ID (BORD), indicating a particular Apple chip (CHIP),
or Exclusive Chip Identification (ECID). But the 4CCs below focus only on the security
policies that users can configure.

Note: Apple uses the term Paired One True recoveryOS (1TR) to indicate a boot into the
paired recoveryOS using a physical power button single-press-and-hold. This differs from
a normal recoveryOS boot, which happens using NVRAM or double-press-and-hold or
which may happen when errors occur on startup. The physical button press of a specific
kind increases trust in that the boot environment isn’t reachable by a software-only
attacker who has broken into macOS.

45Apple Platform Security

LocalPolicy Nonce Hash (lpnh)
•	 Type: OctetString (48)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The lpnh is used for anti-replay of the LocalPolicy. This is an SHA384
hash of the LocalPolicy Nonce (LPN), which is stored in the Secure Storage Component
and accessible using the Secure Enclave Boot ROM or Secure Enclave. The raw anti-
replay value is never visible to the Application Processor, only to the sepOS. An attacker
wanting to convince LLB that a previous LocalPolicy they had captured was valid would
need to place a value into the Secure Storage Component, which hashes to the same
lpnh value found in the LocalPolicy they want to replay. Normally there is a single LPN
valid on the system—except during software updates, when two are simultaneously
valid—to allow for the possibility of falling back to booting the old software in the event
of an update error. When any LocalPolicy for any operating system is changed, all
policies are re-signed with the new lpnh value corresponding to the new LPN found in
the Secure Storage Component. This change happens when the user changes security
settings or creates new operating systems with a new LocalPolicy for each.

Remote Policy Nonce Hash (rpnh)
•	 Type: OctetString (48)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The rpnh behaves the same way as the lpnh but is updated only when the
remote policy is updated, such as when changing the state of Find My enrollment.
This change happens when the user changes the state of Find My on their Mac.

recoveryOS Nonce Hash (ronh)
•	 Type: OctetString (48)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The ronh behaves the same way as the lpnh, but is found exclusively in
the LocalPolicy for system recoveryOS. It’s updated when the system recoveryOS is
updated, such as on software updates. A separate anti-replay value from the lpnh and
rpnh is used so that when a device is put into a disabled state by Find My, existing
operating systems can be disabled (by removing their LPN and RPN from the Secure
Storage Component), while still leaving the system recoveryOS bootable. In this way,
the operating systems can be reenabled when the system owner proves their control
over the system by putting in their iCloud password used for the Find My account. This
change happens when a user updates the system recoveryOS or creates new operating
systems.

46Apple Platform Security

Next Stage Image4 Manifest Hash (nsih)
•	 Type: OctetString (48)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The nsih field represents an SHA384 hash of the Image4 manifest data
structure that describes the booted macOS. The macOS Image4 manifest contains
measurements for all the boot objects—such as iBoot, the static trust cache, device
tree, Boot Kernel Collection, and signed system volume (SSV) volume root hash.
When LLB is directed to boot a given macOS, it’s designed to ensure that the hash of
the macOS Image4 manifest attached to iBoot matches what’s captured in the nsih
field of the LocalPolicy. In this way, the nsih captures the user intention of what
operating system the user has created a LocalPolicy for. Users change the nsih value
implicitly when they perform a software update.

Cryptex1 Image4 Manifest Hash (spih)
•	 Type: OctetString (48)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The spih field represents an SHA384 hash of the Cryptex1 Image4
manifest data structure. The Cryptex1 Image4 manifest contains measurements of
its cryptexes, their file system seals, and their associated trust cache. When macOS
is starting up, the XNU kernel and Page Protection Layer ensure that the hash of the
Cryptex1 Image4 manifest matches what iBoot published from the spih field of the
LocalPolicy. Users change the spih value implicitly when they install a Rapid Security
Response or perform a software update. The Cryptex1 Image4 Manifest Hash can be
updated independently of the Next Stage Image4 Manifest Hash.

Cryptex1 Generation (stng)
•	 Type: 64 bit unsigned integer

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The stng field is a counter value representing when the Cryptex1 Image4
Manifest Hash was last updated in a LocalPolicy. It provides an anti-replay value in place
of lpnh during the Page Protection Layer’s evaluation of the local policy for applying
the Incoming Cryptex. Users increase the stng value implicitly when they install a Rapid
Security Response or a software update.

Auxiliary Kernel Collection (AuxKC) Policy Hash (auxp)
•	 Type: OctetString (48)

•	 Mutable environments: macOS

•	 Description: The auxp is an SHA384 hash of the user-authorized kext list (UAKL) policy.
This is used at AuxKC generation time to help ensure that only user-authorized kexts
are included in the AuxKC. smb2 is a prerequisite for setting this field. Users change
the auxp value implicitly when they change the UAKL by approving a kext from Privacy
& Security in System Settings (macOS 13 or later) or the Security & Privacy pane in
System Preferences (macOS 12 or earlier).

47Apple Platform Security

Auxiliary Kernel Collection (AuxKC) Image4 Manifest Hash (auxi)
•	 Type: OctetString (48)

•	 Mutable environments: macOS

•	 Description: After the system verifies that the UAKL hash matches what’s found in
the auxp field of the LocalPolicy, it requests that the AuxKC be signed by the Secure
Enclave processor application that’s responsible for LocalPolicy signing. Next,
an SHA384 hash of the AuxKC Image4 manifest signature is placed into the LocalPolicy
to avoid the potential for mixing and matching previously signed AuxKCs to an operating
system at boot time. If iBoot finds the auxi field in the LocalPolicy, it attempts to load
the AuxKC from storage and validate its signature. It also verifies that the hash of the
Image4 manifest attached to the AuxKC matches the value found in the auxi field.
If the AuxKC fails to load for any reason, the system continues to boot without this boot
object and (so) without any third-party kexts loaded. The auxp field is a prerequisite
for setting the auxi field in the LocalPolicy. Users change the auxi value implicitly when
they change the UAKL by approving a kext from Privacy & Security in System Settings
(macOS 13 or later) or the Security & Privacy pane in System Preferences (macOS 12
or earlier).

Auxiliary Kernel Collection (AuxKC) Receipt Hash (auxr)
•	 Type: OctetString (48)

•	 Mutable environments: macOS

•	 Description: The auxr is an SHA384 hash of the AuxKC receipt, which indicates the
exact set of kexts that were included into the AuxKC. The AuxKC receipt can be a
subset of the UAKL, because kexts can be excluded from the AuxKC even if they’re user
authorized if they’re known to be used for attacks. In addition, some kexts that can be
used to break the user-kernel boundary may lead to decreased functionality,
such as an inability to use Apple Pay or play 4K and HDR content. Users who want these
capabilities opt in to a more restrictive AuxKC inclusion. The auxp field is a prerequisite
for setting the auxr field in the LocalPolicy. Users change the auxr value implicitly
when they build a new AuxKC from Privacy & Security in System Settings (macOS 13
or later) or the Security & Privacy pane in System Preferences (macOS 12 or earlier).

CustomOS Image4 Manifest Hash (coih)
•	 Type: OctetString (48)

•	 Mutable environments: 1TR

•	 Description: The coih is an SHA384 hash of CustomOS Image4 manifest. The payload
for that manifest is used by iBoot (instead of the XNU kernel) to transfer control.
Users change the coih value implicitly when they use the kmutil configure-boot
command-line tool in 1TR.

APFS volume group UUID (vuid)
•	 Type: OctetString (16)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The vuid indicates the volume group the kernel should use as root.
This field is primarily informational and isn’t used for security constraints. This vuid is
set by the user implicitly when creating a new operating system install.

48Apple Platform Security

Key encryption key (KEK) Group UUID (kuid)
•	 Type: OctetString (16)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The kuid indicates the volume that was booted. The key encryption key
has typically been used for Data Protection. For each LocalPolicy, it’s used to protect
the LocalPolicy signing key. The kuid is set by the user implicitly when creating a new
operating system install.

Paired recoveryOS Trusted Boot Policy Measurement (prot)
•	 Type: OctetString (48)

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: A paired recoveryOS Trusted Boot Policy Measurement (TBPM) is a special
iterative SHA384 hash calculation over the Image4 manifest of a LocalPolicy, excluding
anti-replay values, to give a consistent measurement over time (because anti-replay
values like lpnh are frequently updated). The prot field, which is found only in each
macOS LocalPolicy, provides a pairing to indicate the recoveryOS LocalPolicy that
corresponds to the macOS LocalPolicy.

Has Secure Enclave Signed recoveryOS Local Policy (hrlp)
•	 Type: Boolean

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The hrlp indicates whether or not the prot value (above) is the
measurement of a Secure Enclave–signed recoveryOS LocalPolicy. If not, then the
recoveryOS LocalPolicy is signed by the Apple online signing server, which signs things
such as macOS Image4 files.

Local Operating System Version (love)
•	 Type: Boolean

•	 Mutable environments: 1TR, recoveryOS, macOS

•	 Description: The love indicates the OS version that the LocalPolicy is created for.
The version is obtained from the next state manifest during LocalPolicy creation and is
used to enforce recoveryOS pairing restrictions.

Secure Multi-Boot (smb0)
•	 Type: Boolean

•	 Mutable environments: 1TR, recoveryOS

•	 Description: If smb0 is present and true, LLB allows the next stage Image4 manifest to
be globally signed instead of requiring a personalized signature. Users can change this
field with Startup Security Utility or bputil to downgrade to Reduced Security.

49Apple Platform Security

Secure Multi-Boot (smb1)
•	 Type: Boolean

•	 Mutable environments: 1TR

•	 Description: If smb1 is present and true, iBoot allows objects such as a custom kernel
collection to be Secure Enclave signed with the same key as the LocalPolicy.
Presence of smb0 is a prerequisite for presence of smb1. Users can change this field
using command-line tools such as csrutil or bputil to downgrade to Permissive
Security.

Secure Multi-Boot (smb2)
•	 Type: Boolean

•	 Mutable environments: 1TR

•	 Description: If smb2 is present and true, iBoot allows the Auxiliary Kernel Collection to
be Secure Enclave signed with the same key as the LocalPolicy. The presence of smb0
is a prerequisite for the presence of smb2. Users can change this field using Startup
Security Utility or bputil to downgrade to Reduced Security and enable third-party
kexts.

Secure Multi-Boot (smb3)
•	 Type: Boolean

•	 Mutable environments: 1TR

•	 Description: If smb3 is present and true, a user at the device has opted in to mobile
device management (MDM) control of their system. Presence of this field makes
the LocalPolicy-controlling Secure Enclave processor application accept MDM
authentication instead of requiring local user authentication. Users can change this field
using Startup Security Utility or bputil to enable managed control over third-party
kexts and software updates. (In macOS 11.2 or later, MDM can also initiate an update to
the latest macOS version if the current security mode is Full Security.)

Secure Multi-Boot (smb4)
•	 Type: Boolean

•	 Mutable environments: macOS

•	 Description: If smb4 is present and true, the device has opted in to MDM control of the
operating system using Apple School Manager, Apple Business Manager,
or Apple Business Essentials. Presence of this field makes the LocalPolicy-controlling
Secure Enclave application accept MDM authentication instead of requiring local
user authentication. This field is changed by the MDM solution when it detects that a
device’s serial number appears in any of those three services.

System Integrity Protection (sip0)
•	 Type: 64 bit unsigned integer

•	 Mutable environments: 1TR

50Apple Platform Security

•	 Description: The sip0 holds the existing System Integrity Protection (SIP) policy bits
that previously were stored in NVRAM. New SIP policy bits are added here (instead of
using LocalPolicy fields like the below) if they’re used only in macOS and not used by
LLB. Users can change this field using csrutil from 1TR to disable SIP and downgrade
to Permissive Security.

System Integrity Protection (sip1)
•	 Type: Boolean

•	 Mutable environments: 1TR

•	 Description: If sip1 is present and true, iBoot allows failures to verify the SSV volume
root hash. Users can change this field using csrutil or bputil from 1TR.

System Integrity Protection (sip2)
•	 Type: Boolean

•	 Mutable environments: 1TR

•	 Description: If sip2 is present and true, iBoot won’t lock the Configurable Text Read-
only Region (CTRR) hardware register that marks kernel memory as non-writable. Users
can change this field using csrutil or bputil from 1TR.

System Integrity Protection (sip3)
•	 Type: Boolean

•	 Mutable environments: 1TR

•	 Description: If sip3 is present and true, iBoot won’t enforce its built-in allow list for
the boot-args NVRAM variable, which would otherwise filter the options passed to the
kernel. Users can change this field using csrutil or bputil from 1TR.

Certificates and RemotePolicy
As described in LocalPolicy signing-key creation and management, the LocalPolicy Image4
also contains the Owner Identity Certificate (OIC) and the embedded RemotePolicy.

51Apple Platform Security

Intel-based Mac computers

Boot process for an Intel-based Mac

Intel-based Mac with an Apple T2 Security Chip
When an Intel-based Mac computer with the Apple T2 Security Chip is turned on,
the chip performs a secure boot from its Boot ROM in the same fashion as iPhone, iPad,
and a Mac with Apple silicon. This verifies the iBoot bootloader and is the first step in the
chain of trust. iBoot checks the kernel and kernel extension code on the T2 chip, which
then checks the Intel UEFI firmware. The UEFI firmware and the associated signature are
initially available only to the T2 chip.

After verification, the UEFI firmware image is mapped into a portion of the T2 chip memory.
This memory is made available to the Intel CPU through the enhanced Serial Peripheral
Interface (eSPI). When the Intel CPU first boots, it fetches the UEFI firmware through the
eSPI from the integrity-checked, memory-mapped copy of the firmware located on the
T2 chip.

The evaluation of the chain of trust continues on the Intel CPU, with the UEFI firmware
evaluating the signature for boot.efi, which is the macOS bootloader. The Intel-resident
macOS secure boot signatures are stored in the same Image4 format used for iOS, iPadOS,
and T2 chip secure boot, and the code that parses the Image4 files is the same hardened
code from the current iOS and iPadOS secure boot implementation. Boot.efi in turn verifies
the signature of a new file, called immutablekernel. When secure boot is enabled,
the immutablekernel file represents the complete set of Apple kernel extensions required to
boot macOS. The secure boot policy terminates at the handoff to the immutablekernel,
and after that, macOS security policies (such as System Integrity Protection and signed
kernel extensions) take effect.

52Apple Platform Security

If there are any errors or failures in this process, the Mac enters Recovery mode, Apple T2
Security Chip Recovery mode, or Apple T2 Security Chip Device Firmware Upgrade (DFU)
mode mode.

Microsoft Windows on an Intel-based Mac with a T2 chip
By default, an Intel-based Mac that supports secure boot trust only content signed by
Apple. However, to improve the security of Boot Camp installations, Apple also supports
secure booting for Windows. The Unified Extensible Firmware Interface (UEFi) firmware
includes a copy of the Microsoft Windows Production CA 2011 certificate used to
authenticate Microsoft bootloaders.

Note: There is currently no trust provided for the Microsoft Corporation UEFI CA 2011 that
would allow verification of code signed by Microsoft partners. This UEFI CA is commonly
used to verify the authenticity of bootloaders for other operating systems, such as Linux
variants.

Support for secure boot of Windows isn’t enabled by default; instead, it’s enabled using
Boot Camp Assistant (BCA). When a user runs BCA, macOS is reconfigured to trust
Microsoft first-party signed code during boot. After BCA completes, if macOS fails to
pass the Apple first-party trust evaluation during secure boot, the UEFI firmware attempts
to evaluate the trust of the object according to UEFI secure boot formatting. If the trust
evaluation succeeds, the Mac proceeds and boots Windows. If not, the Mac enters
recoveryOS and informs the user of the trust evaluation failure.

Intel-based Mac computers without a T2 chip
An Intel-based Mac without a T2 chip doesn’t support secure boot. Therefore the Unified
Extensible Firmware Interface (UEFi) firmware loads the macOS booter (boot.efi) from the
file system without verification, and the booter loads the kernel (prelinkedkernel) from the
file system without verification. To protect the integrity of the boot chain, users should
enable all of the following security mechanisms:

•	 System Integrity Protection (SIP): Enabled by default, this protects the booter and
kernel against malicious writes from within a running macOS.

•	 FileVault: This can be enabled in two ways: by the user or by a mobile device
management (MDM) administrator. This protects against a physically present attacker
using target disk mode to overwrite the booter.

•	 Firmware Password: This can be enabled in two ways: by the user or by an MDM
administrator. This helps prevent a physically present attacker from launching alternate
boot modes such as recoveryOS, Single User Mode, or target disk mode from which
the booter can be overwritten. This also helps prevent booting from alternate media, by
which an attacker could run code to overwrite the booter.

53Apple Platform Security

Boot modes of an Intel-based Mac with an Apple T2 Security Chip

An Intel-based Mac with an Apple T2 Security Chip has a variety of boot modes that can
be entered at boot time by pressing key combinations, which are recognized by the UEFI
firmware or booter. Some boot modes, such as Single User Mode, won’t work unless the
security policy is changed to No Security in Startup Security Utility.

Mode Key combo Description

macOS boot None The UEFI firmware hands off to the macOS booter
(a UEFI application), which hands off to the macOS
kernel. On standard booting of a Mac with FileVault
enabled, the macOS booter presents the Login Window
interface, which takes the password to decrypt the
storage.

Startup Manager Option (⌥) The UEFI firmware launches the built-in UEFI
application that presents the user with a boot device
selection interface.

Target Disk Mode
(TDM)

T The UEFI firmware launches the built-in UEFI
application that exposes the internal storage device
as a raw, block-based storage device over FireWire,
Thunderbolt, USB, or any combination of the three
(depending on the Mac model).

Single User
Mode

Command (⌘)-S The macOS kernel passes the -s flag in launchd’s
argument vector, then launchd creates the single-user
shell in the Console app’s tty.

Note: If the user exits the shell, macOS continues boot
to the Login Window.

recoveryOS Command (⌘)-R The UEFI firmware loads a minimal macOS from a
signed disk image (.dmg) file on the internal storage
device.

Internet
recoveryOS

Option (⌥)-Command (⌘)-R The signed disk image is downloaded from the internet
using HTTP.

Diagnostics D The UEFI firmware loads a minimal UEFI diagnostic
environment from a signed disk image file on the
internal storage device.

Internet
Diagnostics

Option (⌥)-D The signed disk image is downloaded from the internet
using HTTP.

Windows boot None If Windows has been installed using Boot Camp, the
UEFI firmware hands off to the Windows booter, which
hands off to the Windows kernel.

54Apple Platform Security

Startup Security Utility on a Mac with an Apple T2 Security Chip

Overview
On an Intel-based Mac with an Apple T2 Security Chip, Startup Security Utility handles a
number of security policy settings. The utility is accessible by booting into recoveryOS and
selecting Startup Security Utility from the Utilities menu and protects supported security
settings from easy manipulation by an attacker.

Critical policy changes require authentication, even in Recovery mode. When Startup
Security Utility is first opened, it prompts the user to enter an administrator password from
the primary macOS installation associated with the currently booted recoveryOS. If no
administrator exists, one must be created before the policy can be changed.
The T2 chip requires that the Mac computer be currently booted into recoveryOS and that
an authentication with a Secure Enclave–backed credential have occurred before such
a policy change can be made. Security policy changes have two implicit requirements.
recoveryOS must:

•	 Be booted from a storage device directly connected to the T2 chip, because partitions
on other devices don’t have Secure Enclave–backed credentials bound to the internal
storage device.

•	 Reside on an APFS-based volume, because there is support only for storing the
Authentication in Recovery credentials sent to the Secure Enclave on the “Preboot”
APFS volume of a drive. HFS plus-formatted volumes can’t use secure boot.

This policy is shown only in Startup Security Utility on an Intel-based Mac with a T2 chip.
Although most use cases shouldn’t require changes to the secure boot policy, users are
ultimately in control of their device’s settings and may choose, depending on their needs,
to disable or downgrade the secure boot functionality on their Mac.

Secure boot policy changes made from within this app apply only to the evaluation of the
chain of trust being verified on the Intel processor. The option “Secure boot the T2 chip”
is always in effect.

55Apple Platform Security

Secure boot policy can be configured to one of three settings: Full Security, Medium
Security, and No Security. No Security completely disables secure boot evaluation on the
Intel processor and allows the user to boot whatever they want.

Full Security boot policy
Full Security is the default boot policy, and it behaves much like iOS and iPadOS or Full
Security on a Mac with Apple silicon. At the time that software is downloaded and prepared
to install, it is personalized with a signature that includes the Exclusive Chip Identification
(ECID)—a unique ID specific to the T2 chip in this case—as part of the signing request.
The signature given back by the signing server is then unique and usable only by that
particular T2 chip. The Unified Extensible Firmware Interface (UEFi) firmware is designed
to ensure that when the Full Security policy is in effect, a given signature isn’t just signed
by Apple but is signed for this specific Mac, essentially tying that version of macOS to that
Mac. This helps prevent rollback attacks as described for Full Security on a Mac with Apple
silicon.

Medium Security boot policy
Medium Security boot policy is somewhat like a traditional UEFI secure boot, in which a
vendor (here, Apple) generates a digital signature for the code to assert it came from the
vendor. In this way, attackers are prevented from inserting unsigned code. We refer to
this signature as a “global” signature because it can be used on any Mac, for any amount
of time, for a Mac that currently has a Medium Security policy set. Neither iOS, iPadOS,
nor the T2 chip itself support global signatures. This setting doesn’t attempt to prevent
rollback attacks.

Media boot policy
Media boot policy exists only on an Intel-based Mac with a T2 chip and is independent from
the secure boot policy. So even if a user disables secure boot, this doesn’t change the
default behavior of preventing anything other than the storage device directly connected to
the T2 chip to boot the Mac. (Media boot policy isn’t required on a Mac with Apple silicon.
For more information, see Startup Disk security policy control.)

56Apple Platform Security

Firmware password protection in an Intel-based Mac

macOS on Intel-based Mac computers with an Apple T2 Security Chip supports the use
of a Firmware Password to help prevent unintended modifications of firmware settings
on a specific Mac. The Firmware Password is designed to prevent selecting alternate
boot modes such as booting into recoveryOS or Single User Mode, booting from an
unauthorized volume, or booting into target disk mode.

Note: The firmware password isn’t required on a Mac with Apple silicon, because the
critical firmware functionality it restricted has been moved into the recoveryOS and
(when FileVault is enabled) recoveryOS requires user authentication before its critical
functionality can be reached.

The most basic mode of firmware password can be reached from the recoveryOS Firmware
Password Utility on an Intel-based Mac without a T2 chip, and from the Startup Security
Utility on an Intel-based Mac with a T2 chip. Advanced options (such as the ability to
prompt for the password at every boot) are available from the firmwarepasswd command-
line tool in macOS.

Setting a Firmware Password is especially important to reduce the risk of attacks on Intel-
based Mac computers without a T2 chip from a physically present attacker. The Firmware
Password can help prevent an attacker from booting to recoveryOS, from where they could
otherwise disable System Integrity Protection (SIP). And by restricting boot of alternative
media, an attacker can’t execute privileged code from another operating system to attack
peripheral firmwares.

A firmware password reset mechanism exists to help users who forget their password.
Users press a key combination at startup, and are presented with a model-specific string
to provide to AppleCare. AppleCare digitally signs a resource that is signature checked by
the Uniform Resource Identifier (URI). If the signature is validated and the content is for the
specific Mac, the UEFI firmware removes the firmware password.

For users who want no one but themselves to remove their firmware password by software
means, the -disable-reset-capability option has been added to the firmwarepasswd
command-line tool in macOS 10.15. Before setting this option, users must acknowledge
that if the password is forgotten and needs removal, the user must bear the cost of the
logic board replacement necessary to achieve this. Organizations that want to protect their
Mac computers from external attackers and from employees must set a firmware password
on organization-owned systems. This can be accomplished on the device in any of the
following ways:

•	 At provisioning time, by manually using the firmwarepasswd command-line tool

•	 With third-party management tools that use the firmwarepasswd command-line tool

•	 Using mobile device management (MDM)

57Apple Platform Security

recoveryOS and diagnostics environments for an Intel-based Mac

recoveryOS
The recoveryOS is completely separate from the main macOS, and the entire contents
are stored in a disk image file named BaseSystem.dmg. There is also an associated
BaseSystem.chunklist, which is used to verify the integrity of the BaseSystem.dmg.
The chunklist is a series of hashes for 10 MB chunks of the BaseSystem.dmg. The Unified
Extensible Firmware Interface (UEFi) firmware evaluates the signature of the chunklist file
and then evaluates the hash one chunk at a time from the BaseSystem.dmg. This helps
ensure that it matches the signed content present in the chunklist. If any of these hashes
don’t match, booting from the local recoveryOS is aborted and the UEFI firmware attempts
to boot from Internet recoveryOS instead.

If the verification is successfully completed, the UEFI firmware mounts the BaseSystem.
dmg as a RAM disk and launches the boot.efi file that’s in it. There’s no need for the UEFI
firmware to do a specific check of the boot.efi, nor for the boot.efi to do a check of the
kernel, because the completed contents of the operating system (of which these elements
are only a subset) have already been integrity checked.

Apple Diagnostics
The procedure for booting the local diagnostic environment is mostly the same as
launching the recoveryOS. Separate AppleDiagnostics.dmg and AppleDiagnostics.chunklist
files are used, but they’re verified in the same way as the BaseSystem files are. Instead
of launching boot.efi, the UEFI firmware launches a file inside the disk image (.dmg file)
named diags.efi, which is in turn responsible for invoking a variety of other UEFI drivers
that can interface with and check for errors in the hardware.

Internet recoveryOS and diagnostic environment
If an error has occurred in the launching of the local recovery or diagnostic environments,
the UEFI firmware attempts to download the images from the internet instead. (A user
can also specifically request the images to be fetched from the internet using special
key sequences held at boot.) The integrity validation of the disk images and chunklists
downloaded from the OS Recovery Server is performed the same way as with images
retrieved from a storage device.

While the connection to the OS Recovery Server is done using HTTP, the complete
downloaded contents are still integrity checked as previously described, and as such are
protected against manipulation by an attacker with control of the network. In the event
that an individual chunk fails integrity verification, it is re-requested from the OS Recovery
Server 11 times, before giving up and displaying an error.

When the internet recovery and diagnostic modes were added to Mac computers in 2011,
it was decided that it would be better to use the simpler HTTP transport, and handle
content authentication using the chunklist mechanism, rather than implement the more
complicated HTTPS functionality in the UEFI firmware, and thus increase the firmwareʼs
attack surface.

58Apple Platform Security

Signed system volume security
In macOS 10.15, Apple introduced the read-only system volume, a dedicated, isolated
volume for system content. macOS 11 or later adds strong cryptographic protections to
system content with a signed system volume (SSV). SSV features a kernel mechanism
that verifies the integrity of the system content at runtime and rejects any data—code
and noncode—without a valid cryptographic signature from Apple. Starting in iOS 15 and
iPadOS 15, the system volume on an iPhone or iPad also gains the cryptographic protection
of a signed system volume.

SSV not only helps prevent tampering with any Apple software that’s part of the operating
system, it also makes macOS software update more reliable and much safer. And because
SSV uses APFS (Apple File System) snapshots, if an update can’t be performed, the old
system version can be restored without reinstallation.

Since its introduction, APFS has provided file-system metadata integrity using
noncryptographic checksums on the internal storage device. SSV strengthens the integrity
mechanism by adding cryptographic hashes, thus extending it to encompass every byte
of file data. Data from the internal storage device (including file system metadata) is
cryptographically hashed in the read path, and the hash is then compared with an expected
value in the file-system metadata. In case of mismatch, the system assumes the data has
been tampered with and won’t return it to the requesting software.

Each SSV SHA256 hash is stored in the main file-system metadata tree, which is itself
hashed. And because each node of the tree recursively verifies the integrity of the hashes
of its children—similar to a binary hash (Merkle) tree—the root node’s hash value, called a
seal, therefore encompasses every byte of data in the SSV, which means the cryptographic
signature covers the entire system volume.

During macOS installation and update, the seal is recomputed from the file system on-
device and that measurement is verified against the measurement Apple signed. On a
Mac with Apple silicon, the bootloader verifies the seal before transferring control to the
kernel. On an Intel-based Mac with an Apple T2 Security Chip, the bootloader forwards
the measurement and signature to the kernel, which then verifies the seal directly before
mounting the root file system. In either case, if the verification fails, the startup process
halts and the user is prompted to reinstall macOS. This procedure is repeated at every boot
unless the user has elected to enter a lower security mode and has separately chosen to
disable the signed system volume.

During iOS and iPadOS software updates, the system volume is prepared and recomputed
in a similar fashion. The iOS and iPadOS bootloaders verify that the seal is intact and that it
matches an Apple-signed value before allowing the device to start the kernel. Mismatches
at boot prompt the user to update the system software on the device. Users aren’t allowed
to disable the protection of a signed system volume on iOS and iPadOS.

SSV and code signing
Code signing is still present and enforced by the kernel. The signed system volume
provides protection when any bytes at all are read from the internal storage device.
In contrast, code signing provides protection when Mach objects are memory mapped as
executable. Both SSV and code signing protect executable code on all read and execute
paths.

59Apple Platform Security

SSV and FileVault
In macOS 11 or later, equivalent at-rest protection for system content is provided by the
SSV, and therefore the system volume no longer needs to be encrypted. Any modifications
made to the file system while it’s at rest are detected by the file system when they’re read.
If the user has turned on FileVault, the user’s content on the data volume is still encrypted
with a user-provided secret.

If the user chooses to disable the SSV, the system at rest becomes vulnerable to
tampering, and this tampering could enable an attacker to extract encrypted user data
when the system next starts up. Therefore the system won’t permit the user to disable the
SSV if FileVault is turned on. Protection while at rest must be enabled or disabled for both
volumes in a consistent manner.

In macOS 10.15 or earlier, FileVault protects operating system software while at rest by
encrypting user and system content with a key protected by a user-provided secret.
This protects against an attacker with physical access to the device from accessing or
effectively modifying the file system containing system software.

SSV and a Mac with an Apple T2 Security Chip
On a Mac with an Apple T2 Security Chip, only macOS itself is protected by the SSV.
The software that runs on the T2 chip and verifies macOS is protected by secure boot.

60Apple Platform Security

Secure software updates
Security is a process; it isn’t enough to reliably boot the operating system version installed
at the factory—there must also exist a mechanism to quickly and securely obtain the
latest security updates. Apple regularly releases software updates to address emerging
security concerns. Users of iPhone and iPad devices receive update notifications on the
device. Mac users find available updates in System Settings (macOS 13 or later) or System
Preferences (macOS 12 or earlier). Updates are delivered wirelessly, for rapid adoption of
the latest security fixes.

Update process security
The update process uses the same hardware-based root of trust that secure boot uses
that is designed to install only Apple-signed code. The update process also uses system
software authorization to check that only copies of operating system versions that are
actively being signed by Apple can be installed on iPhone and iPad devices, or on Mac
computers with the Full Security setting configured as the secure boot policy in Startup
Security Utility. With these secure processes in place, Apple can stop signing older
operating system versions with known vulnerabilities and help prevent downgrade attacks.

For greater software update security, when the device to be upgraded is physically
connected to a Mac, a full copy of iOS or iPadOS is downloaded and installed. But for over-
the-air (OTA) software updates, only the components required to complete an update are
downloaded, improving network efficiency by not downloading the entire operating system.
What’s more, software updates can be cached on a Mac running macOS 10.13 or later with
Content Caching turned on, so that iPhone and iPad devices don’t need to redownload the
necessary update over the internet. (They still need to contact Apple servers to complete
the update process.)

61Apple Platform Security

Personalized update process
During upgrades and updates, certain information is made available to the Apple
installation authorization server, which includes a list of cryptographic measurements for
each part of the installation bundle to be installed (for example, iBoot, the kernel, and the
operating system image), a random anti-replay value, and the device’s unique Exclusive
Chip Identification (ECID).

The authorization server checks the presented list of measurements against versions
whose installation is permitted and, if it finds a match, adds the ECID to the measurement
and signs the result. The server passes a complete set of signed data to the device as
part of the upgrade process. Adding the ECID “personalizes” the authorization for the
requesting device. By authorizing and signing only for known measurements, the server
helps ensure that the update takes place exactly as Apple provided.

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple and
that the measurement of the item loaded from the storage device, combined with the
device’s ECID, matches what was covered by the signature. These steps are designed to
ensure that, on devices that support personalization, the authorization is for a specific
device and that an older operating system or firmware version from one device can’t be
copied to another. The anti-replay value helps prevent an attacker from saving the server’s
response and using it to tamper with a device or otherwise alter the system software.

The personalization process is why a network connection to Apple is always required to
update any device with Apple-designed silicon, including an Intel-based Mac with the
Apple T2 Security Chip.

On devices with the Secure Enclave, that hardware similarly uses system software
authorization to check the integrity of its software and is designed to prevent downgrade
installations.

62Apple Platform Security

Operating system integrity
Apple’s operating system software is designed with security at its core. This design
includes a hardware root of trust—leveraged to enable secure boot—and a secure software
update process that’s quick and safe. Apple’s operating systems also use their purpose-
built silicon-based hardware capabilities to help prevent exploitation as the system runs.
These runtime features protect the integrity of trusted code while it is being executed.
In short, Apple’s operating system software helps mitigate attack and exploit techniques—
whether those originate from a malicious app, from the web, or through any other channel.
Protections listed here are available on devices with supported Apple-designed SoCs,
including iOS, iPadOS, tvOS, watchOS, and now macOS on a Mac with Apple silicon.

Feature A10 A11, S3 A12, A13, A14

S4–S9

A15, A16, A17 M1, M2, M3

Kernel Integrity
Protection

Fast Permission
Restrictions

System
Coprocessor
Integrity
Protection

Pointer
Authentication
Codes

Page Protection
Layer See Note 1

below.

Secure Page
Table Monitor See Note 2

below.

Note 1: Page Protection Layer (PPL) requires that the platform execute only signed and
trusted code; this is a security model that isn’t applicable in macOS.

Note 2: Secure Page Table Monitor (SPTM) is supported on A15, A16, and A17 and replaces
Page Protection Layer on supported platforms.

63Apple Platform Security

Kernel Integrity Protection
After the operating system kernel completes initialization, Kernel Integrity Protection (KIP)
is enabled to help prevent modifications of kernel and driver code. The memory controller
provides a protected physical memory region that iBoot uses to load the kernel and kernel
extensions. After startup is complete, the memory controller denies writes to the protected
physical memory region. The Application Processor’s Memory Management Unit (MMU)
is configured to help prevent mapping privileged code from physical memory outside the
protected memory region and to help prevent writeable mappings of physical memory
within the kernel memory region.

To prevent reconfiguration, the hardware used to enable KIP is locked after the boot
process is complete.

Fast Permission Restrictions
Starting with the Apple A11 Bionic and S3 SoCs, a new hardware primitive was introduced.
This primitive, Fast Permission Restrictions, includes a CPU register that quickly restricts
permissions per thread. With Fast Permission Restrictions (also known as APRR registers),
supported operating systems can remove execute permissions from memory without the
overhead of a system call and a page table walk or flush. These registers provide one more
level of mitigation for attacks from the web, particularly for code compiled at runtime (just-
in-time compiled)—because memory can’t be effectively executed at the same time it’s
being read from and written to.

System Coprocessor Integrity Protection
Coprocessor firmware handles many critical system tasks—for example, the Secure
Enclave, the image sensor processor, and the motion coprocessor. Therefore its security
is a key part of the security of the overall system. To prevent modification of coprocessor
firmware, Apple uses a mechanism called System Coprocessor Integrity Protection (SCIP).

SCIP works much like Kernel Integrity Protection (KIP): At boot time, iBoot loads each
coprocessor’s firmware into a protected memory region, one that’s reserved and separate
from the KIP region. iBoot configures each coprocessor’s memory unit to help prevent:

•	 Executable mappings outside its part of the protected memory region

•	 Writeable mappings inside its part of the protected memory region

Also at boot time, to configure SCIP for the Secure Enclave, the Secure Enclave operating
system is used. After the boot process is complete, the hardware used to enable SCIP is
locked. This is designed to prevent reconfiguration.

64Apple Platform Security

Pointer Authentication Codes
Pointer Authentication Codes (PACs) are used to protect against exploitation of memory
corruption bugs. System software and built-in apps use PAC to help prevent modification
of function pointers and return addresses (code pointers). PAC uses five secret 128-bit
values to sign kernel instructions and data, and each user space process has its own B
keys. Items are salted and signed as indicated below.

Item Key Salt

Function Return Address IB Storage address

Function Pointers IA 0

Block Invocation Function IA Storage address

Objective-C Method Cache IB Storage address + Class + Selector

C++ V-Table Entries IA Storage address + Hash (mangled
method name)

Computed Goto Label IA Hash (function name)

Kernel Thread State GA •

User Thread State Registers IA Storage address

C++ V-Table Pointers DA 0

The signature value is stored in the unused padding bits at the top of the 64-bit pointer.
The signature is verified before use, and the padding is restored to help ensure a
functioning pointer address. Failure to verify results in an abort. This verification increases
the difficulty of many attacks, such as a return-oriented programming (ROP) attack,
which attempts to trick the device into executing existing code maliciously by manipulating
function return addresses stored on the stack.

Page Protection Layer
Page Protection Layer (PPL) in iOS, iPadOS, and watchOS is designed to prevent user
space code from being modified after code signature verification is complete. Building
on Kernel Integrity Protection and Fast Permission Restrictions, PPL manages the page
table permission overrides to make sure only the PPL can alter protected pages containing
user code and page tables. The system provides a massive reduction in attack surface by
supporting systemwide code integrity enforcement, even in the face of a compromised
kernel. This protection isn’t offered in macOS because PPL is only applicable on systems
where all executed code must be signed.

65Apple Platform Security

Secure Page Table Monitor and Trusted Execution Monitor
Secure Page Table Monitor (SPTM) and Trusted Execution Monitor (TXM) are designed
to work together to help protect page tables for both user and kernel processes against
modification, even when attackers have kernel write capabilities and can bypass control
flow protections. SPTM does this by utilizing a higher privilege level than the kernel,
and utilizing the lower privileged TXM to actually enforce the policies that govern code
execution. This system is designed such that a TXM compromise doesn’t automatically
translate to an SPTM bypass due to this privilege separation and the governing of trust
between them. In A15, A16, and A17 SOCs, SPTM (in combination with TXM) replaces the
PPL, providing a smaller attack surface that doesn’t rely on trust of the kernel, even during
early boot. SPTM also relies on new silicon primitives that are an evolution of the Fast
Permission Restrictions that PPL utilizes.

Activating data connections securely
On iPhone and iPad devices and Mac computers, if no data connection has been
established recently, users must use Face ID, Touch ID, or a passcode to activate data
connections through a Thunderbolt, USB, Lightning, Smart Connector, or—in macOS 13.3
or later—the SD Extended Capacity “SDXC” cards interface. This limits the attack surface
against physically connected devices such as malicious chargers while still enabling usage
of other accessories within reasonable time constraints. If more than an hour has passed
since the iPhone or iPad has locked or since an accessory’s data connection has been
terminated, the device won’t allow any new data connections to be established until the
device is unlocked. During this hour period, only data connections from accessories that
have been previously connected to the device while in an unlocked state will be allowed.
These accessories are remembered for 30 days after the last time they were connected.
Attempts by an unknown accessory to open a data connection during this period will
disable all accessory data connections over those connections until the device is unlocked
again. This hour period:

•	 Helps ensure that frequent users of connections to a Mac or PC, to accessories,
or wired to CarPlay won’t need to enter their passcodes every time they attach their
device

•	 Is necessary because the accessory ecosystem doesn’t provide a cryptographically
reliable way to identify accessories before establishing a data connection

In addition, if it’s been more than 3 days since a data connection has been established with
an accessory, the device will disallow new data connections immediately after it locks.
This is to increase protection for users that don’t often make use of such accessories.
These data connections are also disabled whenever the device is in a state where it
requires a passcode to reenable biometric authentication.

The user can choose to reenable always-on data connections in Settings (setting up some
assistive devices does this automatically).

66Apple Platform Security

Verifying accessories for iPhone and iPad
The Made for iPhone and iPad (MFi) licensing program provides vetted accessory
manufacturers access to the iPod Accessories Protocol (iAP) and the necessary supporting
hardware components.

When an MFi accessory communicates with an iPhone or iPad, the accessory must prove
to Apple that it’s been vetted. (The accessory-device connection is with Thunderbolt,
Lightning, Bluetooth, or—for specific devices—USB-C.) As proof of authorization,
the accessory sends an Apple-provided certificate to the device, which the device then
verifies. The device then sends a challenge, which the accessory must answer with a
signed response. This process is entirely handled by a custom integrated circuit (IC) that
Apple provides to approved accessory manufacturers and is transparent to the accessory
itself.

Verified MFi accessories can request access to different transport methods and
functionality—for example, access to digital audio streams over the Thunderbolt cable,
or location information provided over Bluetooth. An authentication IC is designed to help
ensure that only approved MFi accessories are granted full access to the device. If an
accessory doesn’t support authentication, its access is limited to analog audio and a small
subset of serial (UART) audio playback controls.

AirPlay also uses the authentication IC to verify that receivers have been approved by
Apple. AirPlay audio and CarPlay video streams use the MFi-SAP (Secure Association
Protocol), which encrypts communication between the accessory and device using
AES128 in counter (CTR) mode. Ephemeral keys are exchanged using ECDH key exchange
(Curve25519) and signed using the authentication IC’s 1024-bit RSA key as part of the
Station-to-Station (STS) protocol.

BlastDoor for Messages and IDS
iOS, iPadOS, macOS, and watchOS include a security feature called BlastDoor,
first introduced in iOS 14 and related releases. The goal of BlastDoor is to help protect
the system by corralling attackers—increasing the complexity of their efforts to exploit
Messages and Apple Identity Services (IDS). BlastDoor isolates, parses, transcodes,
and validates untrusted data arriving in Messages, IDS and other vectors to help prevent
attacks.

BlastDoor does this by employing sandbox restrictions and memory safe validation of
output which creates a significant obstacle for attackers to overcome before reaching
other parts of the operating system. It’s designed to drastically improve user protection
against attacks, particularly “0-click” attacks—those that don’t require user interaction.

Finally, Messages treats traffic from “known senders” differently than traffic from
“unknown senders”, offering a different set of functionality to each group and segmenting
“known” versus “unknown” data into distinct BlastDoor instances.

67Apple Platform Security

Lockdown Mode security for Apple devices
Lockdown Mode is an optional, extreme protection that’s designed for the very few
individuals who, because of who they are or what they do, might be personally targeted by
some of the most sophisticated digital threats such as targeted mercenary spyware. Most
people are never targeted by attacks of this nature.

When Lockdown Mode is turned on, a device doesn’t function the way it typically does.
To reduce the attack surface that potentially could be exploited, certain apps, websites,
and features are strictly limited for security, and some experiences might not be available
at all.

Lockdown Mode is available in iOS 16, iPadOS 16, macOS 13, and watchOS 10, or later.
Additional protections are available in iOS 17, iPadOS 17, macOS 14, and updates to
watchOS 10.1, or later. To take advantage of additional features of Lockdown Mode, devices
should be updated to the latest operating system. For more information, see the Apple
Support article About Lockdown Mode.

Lockdown Mode makes tradeoffs for increased security at the expense of functionality,
performance, or both. These tradeoffs impact:

•	 Background services

•	 Connectivity

•	 Device management

•	 FaceTime

•	 GameCenter

•	 Mail

•	 Messages

•	 Photos

•	 Safari

•	 System settings

•	 WebKit

https://support.apple.com/105120

68Apple Platform Security

Additional macOS system security capabilities

Additional macOS system security capabilities
macOS operates on a broader set of hardware (for example, Intel-based CPUs, Intel-based
CPUs in combination with the Apple T2 Security Chip, and Apple silicon-based SoCs) and
supports a range of general-purpose computing use cases. Whereas some users use only
the basic preinstalled apps or those available from the App Store, others are kernel hackers
who need to disable essentially all platform protections so they can run and test their
executing code as with the highest levels of trust. Most fall somewhere between,
and many of those have peripherals and software that require varying levels of access.
Apple designed the macOS platform with an integrated approach to hardware, software,
and services—a platform that provides security by design and makes it simple to configure,
deploy, and manage but that retains the configurability that users expect. macOS also
includes the key security technologies that an IT professional needs to help protect
corporate data and integrate within secure enterprise networking environments.

The following capabilities support and help secure the varied needs of macOS users.
They include:

•	 Signed system volume security

•	 System Integrity Protection

•	 Trust caches

•	 Protection for peripherals

•	 Rosetta 2 (automatic translation) support and security for a Mac with Apple silicon

•	 DMA support and protections

•	 Kernel extension (kext) support and security

•	 Option ROM support and security

•	 UEFI firmware security for Intel-based Mac computers

69Apple Platform Security

System Integrity Protection
macOS utilizes kernel permissions to limit writability of critical system files with a feature
called System Integrity Protection (SIP). This feature is separate and in addition to the
hardware-based Kernel Integrity Protection (KIP) available on a Mac with Apple silicon,
which protects modification of the kernel in memory. Mandatory access control technology
is leveraged to provide this and a number of other kernel level protections, including
sandboxing and Data Vault.

Mandatory access controls
macOS uses mandatory access controls—policies that set security restrictions, created
by the developer, that can’t be overridden. This approach is different from discretionary
access controls, which permit users to override security policies according to their
preferences.

Mandatory access controls aren’t visible to users, but they’re the underlying technology
that helps enable several important features, including sandboxing, parental controls,
managed preferences, extensions, and System Integrity Protection.

System Integrity Protection
System Integrity Protection restricts components to read-only in specific critical file
system locations to help prevent malicious code from modifying them. System Integrity
Protection is a computer-specific setting that’s on by default when a user upgrades to
OS X 10.11 or later. On an Intel-based Mac, disabling it removes protection for all partitions
on the physical storage device. macOS applies this security policy to every process
running on the system, regardless of whether it’s running sandboxed or with administrative
privileges.

70Apple Platform Security

Trust caches
One of the objects included in the Secure Boot chain is the static trust cache, a trusted
record of all the Mach-O binaries that are mastered into the signed system volume. Each
Mach-O is represented by a code directory hash. For efficient searching, these hashes are
sorted before being inserted into the trust cache. The code directory is the result of the
signing operation performed by codesign(1). To enforce the trust cache, SIP must remain
enabled. To disable trust cache enforcement on a Mac with Apple silicon, secure boot must
be configured to Permissive Security.

When a binary is executed (whether as part of spawning a new process or mapping
executable code into an existing process), its code directory is extracted and hashed. If the
resulting hash is found in the trust cache, the executable mappings created for the binary
will be granted platform privileges—that is, they may possess any entitlement and execute
without further verification as to the authenticity of the signature. This is in contrast to
an Intel-based Mac, where platform privileges are conveyed to operating system content
by the Apple certificate that signs the binaries. (This certificate doesn’t constrain which
entitlements the binary may possess.)

Nonplatform binaries (for example, notarized third-party code) must have valid certificate
chains to execute, and the entitlements they may possess are constrained by the signing
profile issued to the developer by the Apple Developer Program.

All binaries shipped within macOS are signed with a platform identifier. On a Mac with
Apple silicon, this identifier is used to indicate that even though the binary is signed by
Apple, its code directory hash must be present in the trust cache to execute. On an Intel-
based Mac, the platform identifier is used to perform targeted revocation of binaries from
an older release of macOS; this targeted revocation helps prevent those binaries from
executing on newer versions.

The static trust cache completely locks a set of binaries to a given version of macOS.
This behavior helps prevent legitimately Apple-signed binaries from older operating
systems from being introduced into newer ones for an attacker to gain advantage.

Platform code shipped outside the operating system
Apple ships some binaries—for example, Xcode and the development tools stack—that
aren’t signed with a platform identifier. Even so, they’re still permitted to execute with
platform privileges on a Mac with Apple silicon and a Mac with a T2 chip. Because this
platform software is shipped independently of macOS, it isn’t subject to the revocation
behaviors imposed by the static trust cache.

71Apple Platform Security

Loadable trust caches
Apple ships certain software packages with loadable trust caches. These caches have the
same data structure as the static trust cache. But although there’s only one static trust
cache—and its contents are always guaranteed to be locked into read-only ranges after the
kernel’s early initialization is complete—loadable trust caches are added to the system at
runtime.

These trust caches are authenticated either through the same mechanism that
authenticates boot firmware (personalization using the Apple trusted signing service) or as
globally signed objects (whose signatures don’t bind them to a particular device).

One example of a personalized trust cache is the cache, shipped with the disk image
that’s used to perform field diagnostics on a Mac with Apple silicon. This trust cache is
personalized, along with the disk image, and loaded into the subject Mac computer’s kernel
while it’s booted into a diagnostic mode. The trust cache allows the software within the
disk image to run with platform privilege.

An example of a globally signed trust cache is shipped with macOS software updates.
This trust cache permits a chunk of code within the software update—the update brain—
to run with platform privilege. The update brain performs any work to stage the software
update that the host system lacks the capacity to perform in a consistent fashion across
versions.

72Apple Platform Security

Peripheral processor security in Mac computers
All modern computing systems have many built-in peripheral processors dedicated to tasks
such as networking, graphics, power management, and more. These peripheral processors
are often single-purpose and are much less powerful than the primary CPU. Built-in
peripherals that don’t implement sufficient security become an easier target for attackers
to exploit, through which they can persistently infect the operating system. Having infected
a peripheral processor firmware, an attacker could target software on the primary CPU or
directly capture sensitive data (For example, an Ethernet device could see the contents of
packets that aren’t encrypted.)

Whenever possible, Apple works to reduce the number of peripheral processors necessary
and to avoid designs that require firmware. But when separate processors with their own
firmware are required, efforts are taken to help ensure an attacker can’t persist on that
processor. This can be by verifying the processor in one of two ways:

•	 Running the processor so that it downloads verified firmware from the primary CPU on
startup

•	 Having the peripheral processor implement its own secure boot chain, to verify the
peripheral processor firmware every time the Mac starts up

Apple works with vendors to audit their implementations and enhance their designs to
include desired properties such as:

•	 Ensuring minimum cryptographic strengths

•	 Ensuring strong revocation of known bad firmware

•	 Disabling debug interfaces

•	 Signing the firmware with cryptographic keys that are stored in Apple-controlled
hardware security modules (HSMs)

In recent years, Apple has worked with some external vendors to adopt the same “Image4”
data structures, verification code, and signing infrastructure used by Apple silicon.

When neither storage-free operation nor storage plus secure boot is an option, the design
mandates that firmware updates be cryptographically signed and verified before the
persistent storage can be updated.

73Apple Platform Security

Rosetta 2 on a Mac with Apple silicon
A Mac with Apple silicon is capable of running code compiled for the x86_64 instruction set
using a translation mechanism called Rosetta 2. There are two types of translation offered:
just in time and ahead of time.

Just-in-time translation
In the just-in-time (JIT) translation pipeline, an x86_64 Mach object is identified early
in the image execution path. When these images are encountered, the kernel transfers
control to a special Rosetta translation stub rather than to the dynamic link editor,
dyld(1). The translation stub then translates x86_64 pages during the image’s execution.
This translation takes place entirely within the process. The kernel still verifies the code
hashes of each x86_64 page against the code signature attached to the binary as the page
is faulted in. In the event of a hash mismatch, the kernel enforces the remediation policy
appropriate for that process.

Ahead-of-time translation
In the ahead-of-time (AOT) translation path, x86_64 binaries are read from storage at times
the system deems optimal for responsiveness of that code. The translated artifacts are
written to storage as a special type of Mach object file. That file is similar to an executable
image, but it’s marked to indicate it’s the translated product of another image.

In this model, the AOT artifact derives all of its identity information from the original
x86_64 executable image. To enforce this binding, a privileged userspace entity signs the
translation artifact using a device-specific key that’s managed by the Secure Enclave.
This key is released only to the privileged userspace entity, which is identified as such
using a restricted entitlement. The code directory created for the translation artifact
includes the code directory hash of the original x86_64 executable image. The signature
on the translation artifact itself is known as the supplemental signature.

The AOT pipeline begins similarly to the JIT pipeline, with the kernel transferring control
to the Rosetta runtime rather than to the dynamic link editor, dyld(1). But the Rosetta
runtime then sends an interprocess communication (IPC) query to the Rosetta system
service, which asks whether there’s an AOT translation available for the current executable
image. If found, the Rosetta service provides a handle to that translation, and it’s mapped
into the process and executed. During execution, the kernel enforces the code directory
hashes of the translation artifact which are authenticated by the signature rooted in the
device-specific signing key. The original x86_64 image’s code directory hashes aren’t
involved in this process.

Translated artifacts are stored in a Data Vault which isn’t runtime-accessible by any
entity except for the Rosetta service. The Rosetta service manages access to its cache by
distributing read-only file descriptors to individual translation artifacts; this limits access to
the AOT artifact cache. This service’s interprocess communication and dependent footprint
are kept intentionally very narrow to limit its attack surface.

If the code directory hash of the original x86_64 image doesn’t match with the one
encoded into the AOT translation artifact’s signature, this result is considered the
equivalent of an invalid code signature, and appropriate enforcement action is taken.

If a remote process queries the kernel for the entitlements or other code identity properties
of an AOT-translated executable, the identity properties of the original x86_64 image are
returned to it.

74Apple Platform Security

Static trust cache content
macOS 11 or later ships with Mach “fat” binaries that contain slices of x86_64 and arm64
computer code. On a Mac with Apple silicon, the user may decide to execute the x86_64
slice of a system binary through the Rosetta pipeline—for example to load a plug-in that
has no native arm64 variant. To support this approach, the static trust cache that ships
with macOS, generally, contains three code directory hashes per Mach object file:

•	 A code directory hash of the arm64 slice

•	 A code directory hash of the x86_64 slice

•	 A code directory hash of the AOT translation of the x86_64 slice

The Rosetta AOT translation procedure is deterministic in that it reproduces identical
output for any given input, irrespective of when the translation was performed or on what
device it was performed.

During the macOS build, every Mach object file is run through the Rosetta AOT translation
pipeline associated with the version of macOS being built, and the resulting code directory
hash is recorded into the trust cache. For efficiency, the actual translated products
don’t ship with the operating system and are reconstituted on demand when the user
requests them.

When an x86_64 image is being executed on a Mac with Apple silicon, if that image’s code
directory hash is in the static trust cache, the resulting AOT artifact’s code directory hash
is also expected to be in the static trust cache. Such products aren’t signed by the device-
specific key, because the signing authority is rooted in the Apple secure boot chain.

Unsigned x86_64 code
A Mac with Apple silicon doesn’t permit native arm64 code to execute unless a valid
signature is attached. This signature can be as simple as an ad hoc code signature
(cf. codesign(1)) that doesn’t bear any actual identity from the secret half of an
asymmetric key pair (it’s simply an unauthenticated measurement of the binary).

For binary compatibility, translated x86_64 code is permitted to execute through Rosetta
with no signature information at all. No specific identity is conveyed to this code through
the device-specific Secure Enclave signing procedure, and it executes with precisely the
same limitations that native unsigned code executing on an Intel-based Mac.

75Apple Platform Security

Direct memory access protections for Mac computers
To achieve high throughput on high-speed interfaces like PCIe, FireWire, Thunderbolt,
and USB, computers must support direct memory access (DMA) from peripherals. That is,
they must be able to read and write to RAM without continuous involvement of the CPU.
Since 2012, Mac computers have implemented numerous technologies to protect DMA,
resulting in the best and most comprehensive set of DMA protections on any PC.

Direct memory access protections for a Mac with Apple silicon
Apple systems on chip contain an Input/Output Memory Management Unit (IOMMU) for
each DMA agent in the system, including PCIe and Thunderbolt ports. Because each
IOMMU has its own set of address translation tables to translate DMA requests, peripherals
connected by PCIe or Thunderbolt can access only memory that has been explicitly
mapped for their use. Peripherals can’t access memory belonging to other parts of the
system—such as the kernel or firmware—memory assigned to other peripherals. If an
IOMMU detects an attempt by a peripheral to access memory that isn’t mapped for that
peripheral’s use, it triggers a kernel panic.

Direct memory access protections for an Intel-based Mac
Intel-based Mac computers with Intel Virtualization Technology for Directed I/O (VT-d)
initialize the IOMMU, enabling DMA remapping and interrupt remapping very early in the
boot process to mitigate various classes of security vulnerabilities. The Apple IOMMU
hardware begins operation with a default-deny policy, so the instant when the system is
powered on, it automatically begins blocking DMA requests from peripherals. After being
initialized by software, the IOMMUs begin allowing DMA requests from peripherals to
memory regions that have been explicitly mapped for their use.

Note: Interrupt remapping for PCIe isn’t necessary on a Mac with Apple silicon, because
each IOMMU handles MSIs for its own peripherals.

Starting in macOS 11, all Mac computers with an Apple T2 Security Chip run UEFI drivers
that facilitate DMA in a restricted ring 3 environment when these drivers are pairing with
external devices. This property helps mitigate security vulnerabilities that may occur when
a malicious device interacts with a UEFI driver in an unexpected way at boot time.
In particular, it reduces the impact of vulnerabilities in a drivers handling of DMA buffers.

76Apple Platform Security

Securely extending the kernel in macOS
Starting with macOS 11, if third-party kernel extensions (kexts) are enabled, they can’t
be loaded into the kernel on demand. Instead, they’re merged into an Auxiliary Kernel
Collection (AuxKC), which is loaded during the boot process. For a Mac with Apple silicon,
the measurement of the AuxKC is signed into the LocalPolicy (for previous hardware,
the AuxKC resided on the data volume). Rebuilding the AuxKC requires the user’s approval
and restarting of the macOS to load the changes into the kernel, and it requires that the
secure boot be configured to Reduced Security.

Important: Kexts are no longer recommended for macOS. Kexts risk the integrity and
reliability of the operating system, and Apple recommends users select solutions that don’t
require extending the kernel.

Kernel extensions in a Mac with Apple silicon
Kexts must be explicitly enabled for a Mac with Apple silicon by holding the power button
at startup to enter into One True Recovery (1TR) mode, then downgrading to Reduced
Security and checking the box to enable kernel extensions. This action also requires
entering an administrator password to authorize the downgrade. The combination of the
1TR and password requirement makes it difficult for software-only attackers starting
from within macOS to inject kexts into macOS, which they can then exploit to gain kernel
privileges.

After a user authorizes kexts to load, the above User-Approved Kernel Extension Loading
flow is used to authorize the installation of kexts. The authorization used for the above
flow is also used to capture an SHA384 hash of the user-authorized kext list (UAKL) in the
LocalPolicy. The kernel management daemon (kmd) is then responsible for validating only
those kexts found in the UAKL for inclusion into the AuxKC.

•	 If System Integrity Protection (SIP) is enabled, the signature of each kext is verified
before being included in the AuxKC.

•	 If SIP is disabled, the kext signature isn’t enforced.

This approach allows Permissive Security flows for developers or users who aren’t part of
the Apple Developer Program to test kexts before they are signed.

After the AuxKC is created, its measurement is sent to the Secure Enclave to be signed
and included in an Image4 data structure that can be evaluated by iBoot at startup. As part
of the AuxKC construction, a kext receipt is also generated. This receipt contains the list
of kexts that were actually included in the AuxKC, because the set could be a subset of
the UAKL if banned kexts were encountered. An SHA384 hash of the AuxKC Image4 data
structure and the kext receipt are included in the LocalPolicy. The AuxKC Image4 hash is
used for extra verification by iBoot at startup to help ensure that it isn’t possible to start
up an older Secure Enclave–signed AuxKC Image4 file with a newer LocalPolicy. The kext
receipt is used by subsystems such as Apple Pay to determine whether there are any kexts
currently loaded that could interfere with the trustworthiness of macOS. If there are, then
Apple Pay capabilities may be disabled.

77Apple Platform Security

System extensions
macOS 10.15 allows developers to extend the capabilities of macOS by installing and
managing system extensions that run in user space rather than at the kernel level.
By running in user space, system extensions increase the stability and security of macOS.
Even though kexts inherently have full access to the entire operating system, extensions
running in user space are granted only the privileges necessary to perform their specified
function.

Developers can use frameworks, including DriverKit, EndpointSecurity, and
NetworkExtension, to write USB and human interface drivers, endpoint security tools
(like data loss prevention or other endpoint agents), and VPN and network tools, all without
needing to write kexts. Third-party security agents should be used only if they take
advantage of these APIs or have a robust road map to transition to them and away from
kernel extensions.

User-Approved Kernel Extension Loading
To improve security, user consent is required to load kernel extensions installed with or
after installing macOS 10.13. This process is known as User-Approved Kernel Extension
Loading. Administrator authorization is required to approve a kernel extension. Kernel
extensions don’t require authorization if they:

•	 Were installed on a Mac when running macOS 10.12 or earlier

•	 Are replacing previously approved extensions

•	 Are allowed to load without user consent by using the spctl command-line tool
available when a Mac was booted from recoveryOS

•	 Are allowed to load using mobile device management (MDM) configuration

Starting with macOS 10.13.2, users can use MDM to specify a list of kernel extensions
that load without user consent. This option requires a Mac running macOS 10.13.2 that’s
enrolled in MDM—through Apple School Manager, Apple Business Manager, or MDM
enrollment done by the user.

78Apple Platform Security

Option ROM security in macOS
Note: Option ROMs aren’t currently supported on a Mac with Apple silicon.

Option ROM security in a Mac with the Apple T2 Security Chip
Both Thunderbolt and PCIe devices can have an “Option ROM (OROM)” physically attached
to the device. (This is typically not a true ROM but is instead a rewritable chip that stores
firmware.) On UEFI-based systems, that firmware is typically a UEFI driver, which is read
in by the UEFI firmware and executed. The executed code is supposed to initialize and
configure the hardware it was retrieved from, so that the hardware can be made usable by
the rest of the firmware. This capability is required so that specialized third-party hardware
can load and operate during the earliest startup phases—for example, to start up from
external RAID arrays.

However, because OROMs are generally rewritable, if an attacker overwrites the OROM of a
legitimate peripheral, the attacker’s code executes early in the boot process and is able to
tamper with the execution environment and violate the integrity of software that’s loaded
later. Likewise, if the attacker introduces their own malicious device to the system, they’re
also able to execute malicious code.

In macOS 10.12.3, the behavior of Mac computers sold after 2011 was changed to not
execute OROMs by default at the time the Mac booted unless a special key combination
was pressed. This key combination protected against malicious OROMs being inadvertently
introduced into the macOS boot sequence. The default behavior of the Firmware Password
Utility was also changed so that when the user set a firmware password, OROMs couldn’t
execute even if the key combination was pressed. This protected against a physically
present attacker intentionally introducing a malicious OROM. For users who still need
to run OROMs while they have a firmware password set, a nondefault option can be
configured using the firmwarepasswd command-line tool in macOS.

79Apple Platform Security

OROM sandbox security
In macOS 10.15, UEFI firmware was updated to contain a mechanism for sandboxing
OROMs and for stripping privileges from them. UEFI firmware typically executes all code,
including OROMs, at the maximum CPU privilege level, called ring 0, and has a single
shared virtual memory space for all code and data. Ring 0 is the privilege level where the
macOS kernel runs, whereas the lower privilege level, ring 3, is where apps run. The OROM
sandbox deprivileged OROMs by making use of virtual memory separation like the kernel
does and then making the OROMs run in ring 3.

The sandbox further significantly restricts both the interfaces that the OROMs can call
(much like system call filtering in kernels) and the type of device that an OROM can
register as (much like app approval.) The benefit of this design is that malicious OROMs
can no longer directly write anywhere within ring 0 memory. Instead, they are limited to a
very narrow and well-defined sandbox interface. This limited interface significantly reduces
attack surface and forces attackers to first escape the sandbox and escalate privilege.

80Apple Platform Security

UEFI firmware security in an Intel-based Mac
An Intel-based Mac with an Apple T2 Security Chip offers security using UEFI (Intel)
firmware.

Overview
Since 2006, Mac computers with an Intel-based CPU use an Intel firmware based on the
Extensible Firmware Interface (EFI) Development Kit (EDK) version 1 or version 2. EDK2-
based code conforms to the Unified Extensible Firmware Interface (UEFI) specification.
This section refers to the Intel firmware as the UEFI firmware. The UEFI firmware was the
first code to execute on the Intel chip.

For an Intel-based Mac without the Apple T2 Security Chip, the root of trust for the UEFI
firmware is the chip where the firmware is stored. UEFI firmware updates are digitally
signed by Apple and verified by the firmware before updating the storage. To help prevent
rollback attacks, updates must always have a version newer than the existing one. However,
an attacker with physical access to the Mac could potentially use hardware to attach to the
firmware storage chip and update the chip to contain malicious content. Likewise,
if vulnerabilities are found in the early boot process of the UEFI firmware (before it write-
restricts the storage chip), this could also lead to persistent infection of the UEFI firmware.
This is a hardware architectural limitation common in most Intel-based PCs and present in
all Intel-based Mac computers without the T2 chip.

To help prevent physical attacks that subvert UEFI firmware, Mac computers were
rearchitected to root the trust in the UEFI firmware in the T2 chip. On these Mac
computers, the root of trust for the UEFI firmware is specifically the T2 firmware,
as described in Boot process.

Intel Management Engine (ME) subcomponent
One subcomponent stored within the UEFI firmware is the Intel Management Engine
(ME) firmware. The ME—a separate processor and subsystem within Intel chips—is used
primarily for audio and video copyright protection on a Mac that has only Intel-based
graphics. To reduce this subcomponent’s attack surface, an Intel-based Mac runs a custom
ME firmware from which most components have been removed. Because the resulting
Mac ME firmware is smaller than the default minimal build that Intel makes available, many
components that have been the subject of public attacks by security researchers in the
past are no longer present.

System Management Mode (SMM)
Intel processors have a special execution mode that’s distinct from normal operation.
Called System Management Mode (SMM), it was originally introduced to handle time-
sensitive operations such as power management. However, to perform such actions, Mac
computers have historically used a discrete microcontroller called the System Management
Controller (SMC). No longer a separate microcontroller, the SMC has been integrated into
the T2 chip.

81Apple Platform Security

System security for watchOS
Apple Watch uses many of the same hardware-based platform security capabilities that
iOS uses. For example, Apple Watch:

•	 Performs secure boot and secure software updates

•	 Maintains operating system integrity

•	 Helps protect data—both on the device and when communicating with a paired iPhone
or the internet

Supported technologies include those listed in System Security (for example, KIP, SKP, and
SCIP) as well as Data Protection, keychain, and network technologies.

Updating watchOS
watchOS can be configured to update overnight. For more information on how the
Apple Watch passcode gets stored and used during the update, see Keybags.

Wrist detection
If wrist detection is enabled, the device locks automatically soon after it’s removed from
the user’s wrist. If wrist detection is disabled, Control Center provides an option for locking
Apple Watch. When Apple Watch is locked, Apple Pay can be used only by entering the
passcode on the Apple Watch. Wrist detection is turned off using the Apple Watch app
on iPhone. This setting can also be enforced using a mobile device management (MDM)
solution.

Activation Lock
When Find My is turned on on iPhone, its paired Apple Watch can use Activation Lock.
Activation Lock makes it harder for anyone to use or sell an Apple Watch that’s been lost
or stolen. Activation Lock requires the user’s Apple ID and password to unpair, erase, or
reactivate an Apple Watch.

82Apple Platform Security

Secure pairing with iPhone
Apple Watch can be paired with only one iPhone at a time. When Apple Watch is unpaired,
iPhone communicates instructions to erase all content and data from the watch.

Pairing Apple Watch with iPhone is secured using an out-of-band process to exchange
public keys, followed by the Bluetooth® Low Energy (BLE) link shared secret. Apple Watch
displays an animated pattern, which is captured by the camera on iPhone. The pattern
contains an encoded secret that’s used for BLE 4.1 out-of-band pairing. Standard BLE
Passkey Entry is used as a fallback pairing method, if necessary.

After the BLE session is established and encrypted using the highest security protocol
available in the Bluetooth Core Specification, iPhone and Apple Watch exchange keys using
either:

•	 A process adapted from Apple Identity Service (IDS) as described in the iMessage
security overview.

•	 A key exchange using IKEv2/IPsec. The initial key exchange is authenticated using either
the Bluetooth session key (for pairing scenarios) or the IDS keys (for operating system
update scenarios). Each device generates a random 256-bit Ed25519 public-private key
pair, and during the initial key exchange process, the public keys are exchanged.
When an Apple Watch is first paired running watchOS 10 or later, the private keys are
rooted in its Secure Enclave.

On an iPhone running iOS 17 or later, the private keys aren’t rooted in the
Secure Enclave, because a user restoring their iCloud Backup to the same
iPhone preserves the existing Apple Watch pairing without requiring migration.

Note: The mechanism used for key exchange and encryption varies, depending on which
operating system versions are on the iPhone and Apple Watch. iPhone devices running
iOS 13 or later when paired with an Apple Watch running watchOS 6 or later use only
IKEv2/IPsec for key exchange and encryption.

After keys have been exchanged:

•	 The Bluetooth session key is discarded and all communications between iPhone and
Apple Watch are encrypted using one of the methods listed above—with the encrypted
Bluetooth, Wi-Fi, and cellular links providing a secondary encryption layer.

•	 (IKEv2/IPsec only) The keys are stored in the System keychain and used for
authenticating future IKEv2/IPsec sessions between the devices. Further communication
between these devices is encrypted and integrity protected using AES-256-GCM on
iPhone devices running iOS 15 or later paired with an Apple Watch Series 4 or later
running watchOS 8 or later. (ChaCha20-Poly1305 with 256-bit keys is used on older
devices or devices running older operating system versions.)

The Bluetooth Low Energy device address is rotated at 15-minute intervals to reduce the
risk of the device being locally tracked if someone broadcasts a persistent identifier.

To support apps that need streaming data, encryption is provided with methods described
in FaceTime security, using either the Apple Identity Service (IDS) provided by the paired
iPhone or a direct internet connection.

Apple Watch implements hardware-encrypted storage and class-based protection of files
and keychain items. Access-controlled keybags for keychain items are also used.
Keys used to communicate between Apple Watch and iPhone are also secured using
class-based protection. For more information, see Keybags for Data Protection.

83Apple Platform Security

Auto Unlock and Apple Watch
For greater convenience when using multiple Apple devices, some devices can
automatically unlock others in certain situations. Auto Unlock supports three uses:

•	 An Apple Watch can be unlocked by an iPhone.

•	 A Mac can be unlocked by an Apple Watch.

•	 An iPhone can be unlocked by an Apple Watch when a user is detected with their nose
and mouth covered.

All three use cases are built upon the same basic foundation: a mutually authenticated
Station-to-Station (STS) protocol, with Long-Term Keys exchanged at time of feature
enablement and unique ephemeral session keys negotiated for each request. Regardless of
the underlying communication channel, the STS tunnel is negotiated directly between the
Secure Enclaves in both devices, and all cryptographic material is kept within that secure
domain (with the exception of Mac computers without a Secure Enclave, which terminate
the STS tunnel in the kernel).

Unlocking

A complete unlock sequence can be broken down in two phases. First, the device being
unlocked (the “target”) generates a cryptographic unlock secret and sends it to the device
performing the unlock (the “initiator”). Later, the initiator performs the unlock using the
previously generated secret.

To arm auto unlock, the devices connect to each other using a BLE connection. Then a
32-byte unlock secret randomly generated by the target device is sent to the initiator over
the STS tunnel. During the next biometric or passcode unlock, the target device wraps its
passcode-derived key (PDK) with the unlock secret and discards the unlock secret from its
memory.

To perform the unlock, the devices initiate a new BLE connection and then use peer-to-
peer Wi-Fi to securely approximate the distance between each other. If the devices are
within the specified range and the required security policies are met, the initiator sends
its unlock secret to the target through the STS tunnel. The target then generates a new
32-byte unlock secret and returns it to the initiator. If the current unlock secret sent by the
initiator successfully decrypts the unlock record, the target device is unlocked and the PDK
is rewrapped with a new unlock secret. Finally, the new unlock secret and PDK are then
discarded from the targetʼs memory.

Apple Watch Auto Unlock security policies

For added convenience, Apple Watch can be unlocked by an iPhone directly after initial
startup, without requiring the user to first enter the passcode on the Apple Watch itself.
To achieve this, the random unlock secret (generated during the very first unlock sequence
after enablement of the feature) is used to create a long-term escrow record, which
is stored in the Apple Watch keybag. The escrow record secret is stored in the iPhone
keychain and used to bootstrap a new session after each Apple Watch restart.

84Apple Platform Security

iPhone Auto Unlock security policies

Additional security policies apply to iPhone Auto Unlock with Apple Watch. Apple Watch
can’t be used in place of Face ID on iPhone for other operations, such as Apple Pay or
app authorizations. When Apple Watch successfully unlocks a paired iPhone, the watch
displays a notification and plays an associated haptic. If the user taps the Lock iPhone
button in the notification, the watch sends the iPhone a lock command over BLE. When the
iPhone receives the lock command, it locks and disables both Face ID and unlock using
Apple Watch. The next iPhone unlock must be performed with the iPhone passcode.

Successfully unlocking a paired iPhone from Apple Watch (when enabled) requires that the
following criteria be met:

•	 iPhone must have been unlocked using another method at least once after the
associated Apple Watch was placed on wrist and unlocked.

•	 Sensors must be able to detect that the nose and mouth are covered.

•	 Distance measured must be 2–3 meters or less

•	 Apple Watch must not be in bedtime mode.

•	 Apple Watch or iPhone must have been unlocked recently, or Apple Watch must have
experienced physical motion indicating that the wearer is active (for example,
not asleep).

•	 iPhone must have been unlocked at least once in the past 6.5 hours.

•	 iPhone must be in a state where Face ID is allowed to perform a device unlock.
(For more information, see Face ID, Touch ID, passcodes, and passwords.)

Approve in macOS with Apple Watch
When Auto Unlock with Apple Watch is enabled, the Apple Watch can be used in place,
or together with Touch ID, to approve authorization and authentication prompts from:

•	 macOS and Apple apps that request authorization

•	 Third-party apps that request authentication

•	 Saved Safari passwords

•	 Secure Notes

85Apple Platform Security

Secure use of Wi-Fi, cellular, iCloud, and Gmail
When Apple Watch isn’t within Bluetooth range, Wi-Fi or cellular can be used instead.
Apple Watch automatically joins Wi-Fi networks that have already been joined on the paired
iPhone and whose credentials have synced to the Apple Watch while both devices were
in range. This Auto-Join behavior can then be configured on a per-network basis in the
Wi-Fi section of the Apple Watch Settings app. Wi-Fi networks that have never been joined
before on either device can be manually joined in the Wi-Fi section of the Apple Watch
Settings app.

When Apple Watch and iPhone are out of range, Apple Watch connects directly to iCloud
and Gmail servers to fetch Mail, as opposed to syncing Mail data with the paired iPhone
over the internet. For Gmail accounts, the user must authenticate to Google in the Mail
section of the Watch app on iPhone. The OAuth token received from Google is sent over to
Apple Watch in encrypted format over Apple Identity Service (IDS) so that it can be used to
fetch Mail. This OAuth token is never used for connectivity with the Gmail server from the
paired iPhone.

86Apple Platform Security

Random number generation
Cryptographic pseudorandom number generators (CPRNGs) are an important building
block for secure software. To this end, Apple provides a trusted software CPRNG running in
the iOS, iPadOS, macOS, tvOS, and watchOS kernels. It’s responsible for aggregating raw
entropy from the system and providing secure random numbers to consumers in both the
kernel and user space.

Entropy sources
The kernel CPRNG is seeded from multiple entropy sources during boot and over the
lifetime of the device. These include (contingent on availability):

•	 The Secure Enclave hardware TRNG

•	 Timing-based jitter collected during boot

•	 Entropy collected from hardware interrupts

•	 A seed file used to persist entropy across boots

•	 Intel random instructions—for example, RDSEED and RDRAND (only on an Intel-based
Mac)

The kernel CPRNG
The kernel CPRNG is a Fortuna-derived design targeting a 256-bit security level. It
provides high-quality random numbers to user-space consumers using the following APIs:

•	 The getentropy(2) system call

•	 The random device (/dev/random)

The kernel CPRNG accepts user-supplied entropy through writes to the random device.

87Apple Platform Security

Apple Security Research Device
The Apple Security Research Device is a specially fused iPhone that allows security
researchers to perform research on iOS without having to defeat or disable the platform
security features of iPhone. With this device, a researcher can side-load content that runs
with platform-equivalent permissions and thus perform research on a platform that more
closely models that of production devices.

To help ensure that user devices aren’t affected by the security research device execution
policy, the policy changes are implemented in a variant of iBoot and in the Boot Kernel
Collection. These fail to boot on user hardware. The research iBoot checks for a new fusing
state and enters a panic loop if it’s being run on non-research-fused hardware.

The cryptex subsystem allows a researcher to load a personalized trust cache and a disk
image containing corresponding content. A number of defense in-depth measures have
been implemented that are designed to ensure that this subsystem doesn’t allow execution
on user devices:

•	 launchd doesn’t load the cryptexd launchd property list if it detects a normal
customer device.

•	 cryptexd aborts if it detects a normal customer device.

•	 AppleImage4 doesn’t vend the anti-replay value used for verifying a research cryptex
on a normal customer device.

•	 The signing server refuses to personalize a cryptex disk image for a device not on an
explicit allow list.

To respect the privacy of the security researcher, only the measurements (for example,
hashes) of the executables or kernel cache and the security research device identifiers
are sent to Apple during personalization. Apple doesn’t receive the content of the cryptex
being loaded onto the device.

To avoid having a malicious party attempt to masquerade a research device as a user
device to trick a target into using it for everyday usage, the security research device has
the following differences:

•	 The security research device starts up only while charging. This can be using a
Lightning cable or a Qi-compatible charger. If the device isn’t charging during startup,
the device enters Recovery mode. If the user starts charging and restarts the device,
it starts up as normal. As soon as XNU starts, the device doesn’t need to be charging to
continue operation.

•	 The words Security Research Device are displayed below the Apple logo during iBoot
startup.

•	 The XNU kernel boots in verbose mode.

•	 The device is etched on the side with the message “Property of Apple. Confidential and
Proprietary. Call +1 877 595 1125.”

The following are additional measures that are implemented in software that appears
after boot:

•	 The words Security Research Device are displayed during device setup.

•	 The words Security Research Device are displayed on the Lock Screen and in the
Settings app.

88Apple Platform Security

The Security Research Device affords researchers the following abilities that a user device
doesn’t. Researchers can:

•	 Side-load executable code onto the device with arbitrary entitlements at the same
permission level as Apple operating system components

•	 Start services at startup

•	 Persist content across restarts

•	 Use the research.com.apple.license-to-operate entitlement to permit a process
to debug any other process on the system, including system processes.

The research. namespace is respected only by the RESEARCH variant of the
AppleMobileFileIntegrity kernel extension; any process with this entitlement is
terminated on a customer device during signature validation.

•	 Personalize and restore a custom kernel cache

89Apple Platform Security

Encryption and Data Protection

Encryption and Data Protection overview
The secure boot chain, system security, and app security capabilities all help to verify
that only trusted code and apps run on a device. Apple devices have additional encryption
features to safeguard user data, even when other parts of the security infrastructure have
been compromised (for example, if a device is lost or is running untrusted code). All of
these features benefit both users and IT administrators, protecting personal and corporate
information and providing methods for instant and complete remote wipe in the case of
device theft or loss.

iPhone and iPad devices use a file encryption methodology called Data Protection, whereas
the data on an Intel-based Mac is protected with a volume encryption technology called
FileVault. A Mac with Apple silicon uses a hybrid model that supports Data Protection, with
two caveats: The lowest protection level Class (D) isn’t supported, and the default level
(Class C) uses a volume key and acts just like the FileVault on an Intel-based Mac.
In all cases, key management hierarchies are rooted in the dedicated silicon of the Secure
Enclave, and a dedicated AES Engine supports line-speed encryption and helps ensure that
long-lived encryption keys aren’t exposed to the kernel operating system or CPU (where
they might be compromised). (An Intel-based Mac with a T1 or lacking a Secure Enclave
doesn’t use dedicated silicon to protect its FileVault encryption keys.)

Besides using Data Protection and FileVault to help prevent unauthorized access to data,
Apple uses operating system kernels to enforce protection and security. The kernel uses
access controls to sandbox apps (which restricts what data an app can access) and a
mechanism called a Data Vault (which rather than restricting the calls an app can make,
restricts access to the data of an app from all other requesting apps).

90Apple Platform Security

Passcodes and passwords
To protect user data from malicious attack, Apple uses passcodes in iOS and iPadOS
and passwords in macOS. The longer a passcode or password is, the stronger it is—and
the easier it is to discourage brute-force attacks. To further discourage attacks, Apple
enforces time delays (for iOS and iPadOS) and a limited number of password attempts
(for Mac).

In iOS and iPadOS, setting up a device passcode or password, the user automatically
enables Data Protection. Data Protection is also enabled on other devices that feature an
Apple system on chip (SoC)—such as a Mac with Apple silicon, Apple TV, and Apple Watch.
In macOS, Apple uses the built-in volume encryption program FileVault.

How strong passcodes and passwords increase security
iOS and iPadOS support six-digit, four-digit, and arbitrary-length alphanumeric passcodes.
Besides unlocking the device, a passcode or password provides entropy for certain
encryption keys. This means an attacker in possession of a device can’t get access to data
in specific protection classes without the passcode.

The passcode or password is entangled with the device’s UID, so brute-force attempts
must be performed on the device under attack. A large iteration count is used to
make each attempt slower. The iteration count is calibrated so that one attempt takes
approximately 80 milliseconds. In fact, it would take more than five and one-half years to
try all combinations of a six-character alphanumeric passcode with lowercase letters and
numbers.

The stronger the user passcode is, the stronger the encryption key becomes. And by
using Face ID and Touch ID, the user can establish a much stronger passcode than would
otherwise be practical. The stronger passcode increases the effective amount of entropy
protecting the encryption keys used for Data Protection, without adversely affecting the
user experience of unlocking a device multiple times throughout the day.

If a long password that contains only numbers is entered, a numeric keypad is displayed at
the Lock Screen instead of the full keyboard. A longer numeric passcode may be easier to
enter than a shorter alphanumeric passcode, while providing similar security.

Users can specify a longer alphanumeric passcode by selecting Custom Alphanumeric
Code in the Passcode Options in Settings > Touch ID & Passcode or Face ID & Passcode.

91Apple Platform Security

How escalating time delays discourage brute-force attacks
In iOS, iPadOS, and macOS, to further discourage brute-force passcode attacks, there are
escalating time delays after the entry of an invalid passcode, password, or PIN (depending
on the device and the state the device is in), as shown in the table below.

Attempts 3 4 5 6 7 8 9 10 or more

iOS and
iPadOS Lock
Screen

None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours Device is
disabled
and must
connect to
a Mac or
PC

watchOS
Lock Screen

None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours Device is
disabled
and must
connect to
an iPhone

macOS Login
Window and
Lock Screen

None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours 8 hours

macOS
Recovery
Mode

None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours See “How
escalating
time delays
discourage
brute-force
attacks in
macOS”
below

FileVault with
recovery key

(Personal,
Institutional,
or iCloud)

None 1 minute 5 minutes 15 minutes 1 hour 3 hours 8 hours See “How
escalating
time delays
discourage
brute-force
attacks in
macOS”
below

macOS
Remote lock
PIN code

1 minute 5 minutes 15 minutes 30 minutes 1 hour 1 hour 1 hour 1 hour

If the Erase Data option is turned on for iPhone or iPad (in Settings > [Face ID] or
[Touch ID] & Passcode), after 10 consecutive incorrect attempts to enter the passcode,
all content and settings are removed from storage. Consecutive attempts of the same
incorrect passcode don’t count toward the limit. This setting is also available as an
administrative policy through a mobile device management (MDM) solution that supports
this feature and through Microsoft Exchange ActiveSync, and can be set to a lower
threshold.

On devices with Secure Enclave, the delays are enforced by the Secure Enclave. If the
device is restarted during a timed delay, the delay is still enforced, with the timer starting
over for the current period.

92Apple Platform Security

How escalating time delays discourage brute-force attacks
in macOS
To help prevent brute-force attacks, when Mac starts up, no more than 10 password
attempts are allowed at the Login Window, and escalating time delays are imposed after
a certain number of incorrect attempts. The delays are enforced by the Secure Enclave.
If Mac is restarted during a timed delay, the delay is still enforced, with the timer starting
over for the current period.

To help prevent malware from causing permanent data loss by trying to attack the user’s
password, these limits aren’t enforced after the user has successfully logged in to the Mac,
but they are reimposed after a restart. If the 10 attempts are exhausted, 10 more attempts
are available after restarting into recoveryOS. And if those are also exhausted, then 10
additional attempts are available for each FileVault recovery mechanism (iCloud recovery,
FileVault recovery key, and institutional key), for a maximum of 30 additional attempts.
After those additional attempts are exhausted, the Secure Enclave no longer processes any
requests to decrypt the volume or verify the password, and the data on the drive becomes
unrecoverable.

To help protect data in an enterprise setting, IT should define and enforce FileVault
configuration policies using an MDM solution. Organizations have several options for
managing encrypted volumes, including institutional recovery keys, personal recovery keys
(that can optionally be stored with MDM for escrow), or a combination of both. Key rotation
can also be set as a policy in MDM.

On a Mac with the Apple T2 Security Chip, the password serves a similar function except
that the key generated is used for FileVault encryption rather than Data Protection.
macOS also offers additional password recovery options:

•	 iCloud recovery

•	 FileVault recovery

•	 FileVault institutional key

93Apple Platform Security

Data Protection

Data Protection overview
Apple uses a technology called Data Protection to protect data stored in flash storage on
the devices that feature an Apple SoC—such as iPhone, iPad, Apple Watch, Apple TV, and a
Mac with Apple silicon. With Data Protection, a device can respond to common events such
as incoming phone calls while at the same time providing a high level of encryption for
user data. Certain system apps (such as Messages, Mail, Calendar, Contacts, Photos) and
Health data values use Data Protection by default. Third-party apps receive this protection
automatically.

Implementation
Data Protection is implemented by constructing and managing a hierarchy of keys and
builds on the hardware encryption technologies built into Apple devices. Data Protection is
controlled on a per-file basis by assigning each file to a class; accessibility is determined
according to whether the class keys have been unlocked. APFS (Apple File System) allows
the file system to further subdivide the keys into a per-extent basis (where portions of a
file can have different keys).

Every time a file on the data volume is created, Data Protection creates a new 256-bit key
(the per-file key) and gives it to the hardware AES Engine, which uses the key to encrypt
the file as it’s being written to flash storage. On A14 through A17 and M1 through
M3 devices, the encryption uses AES-256 in XTS mode, where the 256-bit per-file-key
goes through a Key Derivation Function (NIST Special Publication 800-108) to derive a
256-bit tweak and a 256-bit cipher key. On A9 through A13 and S5 through S9 devices,
the encryption uses AES-128 in XTS mode, where the 256-bit per file key is split to provide
a 128-bit tweak and a 128-bit cipher key.

On a Mac with Apple silicon, Data Protection defaults to Class C (see Data Protection
classes) but utilizes a volume key rather than a per-extent or per-file key—effectively re-
creating the security model of FileVault for user data. Users must still opt in to FileVault to
receive the full protection of entangling the encryption key hierarchy with their password.
Developers can also opt in to a higher protection class that uses a per-file or per-
extent key.

94Apple Platform Security

Data Protection in Apple devices
On Apple devices with Data Protection, each file is protected with a unique per-file (or per-
extent) key. The key, wrapped using the NIST AED key wrap algorithm, is further wrapped
with one of several class keys, depending on how the file is meant to be accessed.
The wrapped per-file key is then stored in the file’s metadata.

Devices with APFS format may support cloning of files (zero-cost copies using copy-
on-write technology). If a file is cloned, each half of the clone gets a new key to accept
incoming writes so that new data is written to the media with a new key. Over time, the file
may become composed of various extents (or fragments), each mapping to different keys.
However, all of the extents that comprise a file are guarded by the same class key.

When a file is opened, its metadata is decrypted with the file system key, revealing the
wrapped per-file key and a notation on which class protects it. The per-file (or per-extent)
key is unwrapped with the class key and then supplied to the hardware AES Engine, which
decrypts the file as it’s read from flash storage. All wrapped file key handling occurs in the
Secure Enclave; the file key is never directly exposed to the Application Processor.
At startup, the Secure Enclave negotiates an ephemeral key with the AES Engine. When the
Secure Enclave unwraps a file’s keys, they’re rewrapped with the ephemeral key and sent
back to the Application Processor.

The metadata of all files in the data volume file system are encrypted with a random
volume key, which is created when the operating system is first installed or when the
device is wiped by a user. This key is encrypted and wrapped by a key wrapping key that
is known only to the Secure Enclave for long-term storage. The key wrapping key changes
every time a user erases their device. On A9 (and newer) SoCs, Secure Enclave relies upon
entropy, backed by anti-replay systems, to achieve effaceability and to protect its key
wrapping key, among other assets. For more information, see Secure nonvolatile storage.

Just like per-file or per-extent keys, the metadata key of the data volume is never directly
exposed to the Application Processor; the Secure Enclave provides an ephemeral,
per-boot version instead. When stored, the encrypted file system key is additionally
wrapped by an “effaceable key” stored in Effaceable Storage or using a media key-
wrapping key, protected by Secure Enclave anti-replay mechanism. This key doesn’t
provide additional confidentiality of data. Instead, it’s designed to be quickly erased on
demand (by the user with the “Erase All Content and Settings” option, or by a user or
administrator issuing a remote wipe command from a mobile device management (MDM)
solution, Microsoft Exchange ActiveSync, or iCloud). Erasing the key in this manner renders
all files cryptographically inaccessible.

The contents of a file may be encrypted with one or more per-file (or per-extent) keys that
are wrapped with a class key and stored in a file’s metadata, which in turn is encrypted
with the file system key. The class key is protected with the hardware UID and, for some
classes, the user’s passcode. This hierarchy provides both flexibility and performance.
For example, changing a file’s class only requires rewrapping its per-file key, and a change
of passcode just rewraps the class key.

95Apple Platform Security

Data Protection classes
When a new file is created on devices supporting Data Protection, it’s assigned a class
by the app that creates it. Each class uses different policies to determine when the data
is accessible. The basic classes and policies are described in the following sections.
Apple silicon-based Mac computers don’t support Class D: No Protection, and a security
boundary is established around logging in and out (not locking or unlocking as on iPhone
and iPad).

Class Protection type

Class A: Complete Protection NSFileProtectionComplete

Class B: Protected Unless Open NSFileProtectionCompleteUnlessOpen

Class C: Protected Until First User Authentication

Note: macOS uses a volume key to recreate FileVault
protection characteristics.

NSFileProtectionCompleteUntilFirstUserAuthentication

Class D: No Protection

Note: Not supported in macOS.

NSFileProtectionNone

Complete Protection
NSFileProtectionComplete: The class key is protected with a key derived from the user
passcode or password and the device UID. Shortly after the user locks a device
(10 seconds, if the Require Password setting is Immediately), the decrypted class key is
discarded, rendering all data in this class inaccessible until the user enters the passcode
again or unlocks (logs in to) the device using Face ID or Touch ID.

In macOS, shortly after the last user is logged out, the decrypted class key is discarded,
rendering all data in this class inaccessible until a user enters the passcode again or logs
into the device using Touch ID.

Protected Unless Open
NSFileProtectionCompleteUnlessOpen: Some files may need to be written while the
device is locked or the user is logged out. A good example of this is a mail attachment
downloading in the background. This behavior is achieved by using asymmetric elliptic
curve cryptography (ECDH over Curve25519). The usual per-file key is protected by a key
derived using One-Pass Diffie-Hellman Key Agreement as described in NIST SP 800-56A.

The ephemeral public key for the Agreement is stored alongside the wrapped per-file key.
The KDF is Concatenation Key Derivation Function (Approved Alternative 1) as described
in 5.8.1 of NIST SP 800-56A. AlgorithmID is omitted. PartyUInfo and PartyVInfo are the
ephemeral and static public keys, respectively. SHA256 is used as the hashing function.
As soon as the file is closed, the per-file key is wiped from memory. To open the file again,
the shared secret is re-created using the Protected Unless Open class’s private key and
the file’s ephemeral public key, which are used to unwrap the per-file key that is then used
to decrypt the file.

In macOS, the private part of NSFileProtectionCompleteUnlessOpen is accessible as long
as any users on the system are logged in or are authenticated.

96Apple Platform Security

Protected Until First User Authentication
NSFileProtectionCompleteUntilFirstUserAuthentication: This class behaves in the same way
as Complete Protection, except that the decrypted class key isn’t removed from memory
when the device is locked or the user logged out. The protection in this class has similar
properties to desktop full-volume encryption, and protects data from attacks that involve
a reboot. This is the default class for all third-party app data not otherwise assigned to a
Data Protection class.

In macOS, this class utilizes a volume key which is accessible as long as the volume is
mounted, and acts just like FileVault.

No Protection
NSFileProtectionNone: This class key is protected only with the UID, and is kept in
Effaceable Storage. Since all the keys needed to decrypt files in this class are stored
on the device, the encryption only affords the benefit of fast remote wipe. If a file isn’t
assigned a Data Protection class, it is still stored in encrypted form (as is all data on an iOS
and iPadOS device).

This isn’t supported in macOS.

Note: In macOS, for volumes that don’t correspond to a booted operating system, all data
protection classes are accessible as long as the volume is mounted. The default data
protection class is NSFileProtectionCompleteUntilFirstUserAuthentication. Per-extent key
functionality is available to both Rosetta 2 and native apps.

Keybags for Data Protection
The keys for both file and keychain Data Protection classes are collected and managed in
keybags on iOS, iPadOS, tvOS, and watchOS. These operating systems use the following
keybags: user, device, backup, escrow, and iCloud Backup.

User keybag
The user keybag is where the wrapped class keys used in normal operation of the device
are stored. For example, when a passcode is entered, NSFileProtectionComplete is loaded
from the user keybag and unwrapped. It is a binary property list (.plist) file stored in the No
Protection class.

For devices with SoCs earlier than the A9, the .plist file contents are encrypted with a
key held in Effaceable Storage. To give forward security to keybags, this key is wiped and
regenerated each time a user changes their passcode.

For devices with the A9 or later SoCs, the .plist file contains a key which indicates that the
keybag is stored in a locker protected by the Secure Enclave–controlled anti-replay value.

The Secure Enclave manages the user keybag and can be queried regarding a device’s lock
state. It reports that the device is unlocked only if all the class keys in the user keybag are
accessible and have been unwrapped successfully.

97Apple Platform Security

Device keybag
The device keybag is used to store the wrapped class keys used for operations involving
device-specific data. iPadOS devices configured for shared use sometimes need access to
credentials before any user has logged in; therefore, a keybag that isn’t protected by the
user’s passcode is required.

iOS and iPadOS don’t support cryptographic separation of per-user file system content,
which means the system uses class keys from the device keybag to wrap per-file keys.
The keychain, however, uses class keys from the user keybag to protect items in the user
keychain. In iPhone and iPad devices configured for use by a single user (the default
configuration), the device keybag and the user keybag are one and the same, and are
protected by the user’s passcode.

Backup keybag
The backup keybag is created when an encrypted backup is made by the Finder
(macOS 10.15 or later) or iTunes (in macOS 10.14 or earlier) and stored on the computer
to which the device is backed up. A new keybag is created with a new set of keys, and the
backed-up data is reencrypted to these new keys. As explained previously, nonmigratory
keychain items remain wrapped with the UID-derived key, allowing them to be restored
to the device they were originally backed up from but rendering them inaccessible on a
different device.

The keybag—protected with the password set—is run through 10 million iterations of
the key derivation function PBKDF2. Despite this large iteration count, there’s no tie to a
specific device, and therefore a brute-force attack parallelized across many computers
could theoretically be attempted on the backup keybag. This threat can be mitigated with a
sufficiently strong password.

If a user chooses not to encrypt the backup, the files aren’t encrypted regardless of their
Data Protection class but the keychain remains protected with a UID-derived key. This is
why keychain items migrate to a new device only if a backup password is set.

Escrow keybag
The escrow keybag is used for syncing with the Finder (macOS 10.15 or later) or iTunes
(in macOS 10.14 or earlier) through USB and mobile device management (MDM).
This keybag allows the Finder or iTunes to back up and sync without requiring the user
to enter a passcode, and it allows an MDM solution to remotely clear a user’s passcode.
It is stored on the computer that’s used to sync with the Finder or iTunes, or on the MDM
solution that remotely manages the device.

The escrow keybag improves the user experience during device syncing, which potentially
requires access to all classes of data. When a passcode-locked device is first connected
to the Finder or iTunes, the user is prompted to enter a passcode. The device then creates
an escrow keybag containing the same class keys used on the device, protected by a newly
generated key. The escrow keybag and the key protecting it are split between the device
and the host or server, with the data stored on the device in the Protected Until First User
Authentication class. This is why the device passcode must be entered before the user
backs up with the Finder or iTunes for the first time after a reboot.

98Apple Platform Security

In the case of an over-the-air (OTA) software update, the user is prompted for their
passcode when initiating the update. This is used to securely create a one-time unlock
token, which unlocks the user keybag after the update. This token can’t be generated
without entering the user’s passcode, and any previously generated token is invalidated if
the user’s passcode changed.

One-time unlock tokens are either for attended or unattended installation of a software
update. They’re encrypted with a key derived from the current value of a monotonic
counter in the Secure Enclave, the UUID of the keybag, and the Secure Enclave UID.

On A9 (or later) SoCs, one-time Unlock token no longer relies on counters or Effaceable
Storage. Instead, it’s protected by Secure Enclave–controlled anti-replay value.

The one-time unlock token for attended software updates expires after 20 minutes.
In iOS 13 and iPadOS 13.1, or later, the token is stored in a locker protected by the Secure
Enclave. Prior to iOS 13, this token was exported from the Secure Enclave and written to
Effaceable Storage or was protected by the Secure Enclave anti-replay mechanism.
A policy timer incremented the counter if the device hadn’t rebooted within 20 minutes.

Unattended software updates occur when the system detects an update is available and
when one of the following is true:

•	 Automatic updates are configured in iOS 12 or later.

•	 The user chooses Install Later when notified of the update.

After the user enters their passcode, a one-time unlock token is generated and can remain
valid in Secure Enclave for up to 8 hours. If the update hasn’t yet occurred, this one-time
unlock token is destroyed on every lock and re-created on every subsequent unlock.
Each unlock restarts the 8 hour window. After 8 hours a policy timer invalidates the
one-time unlock token.

iCloud Backup keybag
The iCloud Backup keybag is similar to the backup keybag. All the class keys in this
keybag are asymmetric (using Curve25519, like the Protected Unless Open Data Protection
class) does. An asymmetric keybag is also used to protect the backed-up keychain for
iCloud Keychain recovery.

99Apple Platform Security

Protecting keys in alternate boot modes
Data Protection is designed to provide access to user data only after successful
authentication, and only to the authorized user. Data protection classes are designed to
support a variety of use cases, such as the ability to read and write some data even when
a device is locked (but after first unlock). Additional steps are taken to protect access to
user data during alternate boot modes such as those used for Device Firmware Update
(DFU) mode, Recovery mode, Apple Diagnostics, or even during software update. These
capabilities are based on a combination of hardware and software features, and have been
expanded as Apple-designed silicon has evolved.

Feature A10 A11–A17

S3–S9

M1, M2, M3

Recovery: All Data Protection
Classes protected

Alternate boots of DFU mode,
Recovery, and software updates:
Class A, B, and C data protected

The Secure Enclave AES Engine is equipped with lockable software seed bits. When keys
are created from the UID, these seed bits are included in the key derivation function to
create additional key hierarchies. How the seed bit is used varies according to the system
on chip:

•	 Starting with the Apple A10 and S3 SoCs, a seed bit is dedicated to distinguish keys
protected by the user’s passcode. The seed bit is set for keys that require the user’s
passcode (including Data Protection Class A, Class B, and Class C keys), and cleared
for keys that don’t require the user’s passcode (including the file system metadata key
and Class D keys).

•	 In iOS 13 or later and iPadOS 13.1 or later on devices with an A10 or later, all user data
is rendered cryptographically inaccessible when devices are booted into Diagnostics
mode. This is achieved by introducing an additional seed bit whose setting governs the
ability to access the media key, which itself is needed to access the metadata
(and therefore contents of all files) on the data volume encrypted with Data Protection.
This protection encompasses files protected in all classes (A, B, C, and D), not just
those that required the user’s passcode.

•	 On A12 SoCs, the Secure Enclave Boot ROM locks the passcode seed bit if the
Application Processor has entered Device Firmware Upgrade (DFU) mode or Recovery
mode. When the passcode seed bit is locked, no operation to change it is allowed.
This is designed to prevent access to data protected with the user’s passcode.

100Apple Platform Security

Restoring a device after it enters DFU mode returns it to a known good state with the
certainty that only unmodified Apple-signed code is present. DFU mode can be entered
manually.

See the following Apple Support articles on how to place a device in DFU mode:

Device Apple Support article

iPhone, iPad If you forgot your iPhone passcode

Apple TV If you see a warning symbol on Apple TV

A Mac with Apple silicon How to revive or restore Mac firmware

Protecting user data in the face of attack
Attackers attempting to extract user data often try a number of techniques: extracting
the encrypted data to another medium for brute-force attack, manipulating the operating
system version, or otherwise changing or weakening the security policy of the device to
facilitate attack. Attacking data on a device often requires communicating with the device
using physical interfaces like Thunderbolt, Lightning, or USB-C. Apple devices include
features to help prevent such attacks.

Apple devices support a technology called Sealed Key Protection (SKP) that’s designed
to ensure that cryptographic material is rendered unavailable off device, or that’s used
if manipulations are made to operating system versions or security settings without
appropriate user authorization. This feature is not provided by the Secure Enclave; instead,
it’s supported by hardware registers that exist at a lower layer to provide an additional
layer of protection to the keys necessary to decrypt user data independent of the Secure
Enclave.

Note: SKP is available only on devices with an Apple-designed SoC.

Feature A11–A17

S3–S9

M1, M2, M3

Sealed Key Protection

iPhone and iPad devices can also be configured to only activate data connections in
conditions more likely to indicate the device is still under the physical control of the
authorized owner.

https://support.apple.com/HT204306
https://support.apple.com/108807
https://support.apple.com/108900

101Apple Platform Security

Sealed Key Protection (SKP)
On Apple devices that support Data Protection, the key encryption key (KEK) is protected
(or sealed) with measurements of the software on the system, as well as being tied to the
UID available only from the Secure Enclave. On a Mac with Apple silicon, the protection of
the KEK is further strengthened by incorporating information about security policy on the
system, because macOS supports critical security policy changes (for example, disabling
secure boot or SIP) that are unsupported on other platforms. On a Mac with Apple silicon,
this protection encompass FileVault keys, because FileVault is implemented using Data
Protection (Class C).

The key that results from entangling the user password, long-term SKP key, and Hardware
key 1 (the UID from Secure Enclave) is called the password-derived key. This key is used
to protect the user keybag (on all supported platforms) and KEK (in macOS only), and then
enable biometric unlock or auto unlock with other devices such as Apple Watch.

The Secure Enclave Boot Monitor captures the measurement of the Secure Enclave OS
that is loaded. When the Application Processor Boot ROM measures the Image4 manifest
attached to LLB, that manifest contains a measurement of all other system-paired firmware
that is loaded as well. The LocalPolicy contains the core security configurations for the
macOS which are loaded. The LocalPolicy also contains the nsih field which is a hash
of the macOS Image4 manifest. The macOS Image4 manifest contains measurements of
all of the macOS-paired firmware and core macOS boot objects such as the Boot Kernel
Collection or signed system volume (SSV) root hash.

If an attacker is able to unexpectedly change any of the above measured firmware,
software, or security configuration components, it modifies the measurements stored in the
hardware registers. The modification of the measurements causes the crypto-hardware-
derived system measurement root key (SMRK) to derive to a different value, effectively
breaking the seal on the key hierarchy. That causes the system measurement device key
(SMDK) to be inaccessible, which in turn causes the KEK, and thus the data,
to be inaccessible.

102Apple Platform Security

However, when the system isn’t under attack, it must accommodate legitimate software
updates that change the firmware measurements and the nsih field in the LocalPolicy to
point at new macOS measurements. In other systems that attempt to incorporate firmware
measurements but that don’t have a known good source of truth, the user is required
to disable the security, update firmware, and then reenable so that a new measurement
baseline can be captured. This significantly increases the risk that the attacker could
tamper with firmware during a software update. The system is helped by the fact that
the Image4 manifest contains all the measurements needed. The hardware that decrypts
the SMDK with the SMRK when the measurements match during a normal boot can also
encrypt the SMDK to a proposed future SMRK. By specifying the measurements that are
expected after a software update, the hardware can encrypt an SMDK, which is accessible
in a current operating system, so that it remains accessible in a future operating system.
Similarly, when a customer legitimately changes their security settings in the LocalPolicy,
the SMDK must be encrypted to the future SMRK based on the measurement for the
LocalPolicy, which LLB computes on the next restart.

Role of Apple File System
Apple File System (APFS) is a proprietary file system that was designed with encryption
in mind. APFS works across all Apple’s platforms—for iPhone, iPad, Mac, Apple TV, and
Apple Watch. Optimized for Flash/SSD storage, it features strong encryption, copy-on-
write metadata, space sharing, cloning for files and directories, snapshots, fast directory
sizing, atomic safe-save primitives, and improved file system fundamentals, as well as a
unique copy-on-write design that uses I/O coalescing to deliver maximum performance
while ensuring data reliability.

Space sharing
APFS allocates storage space on demand. When a single APFS container has multiple
volumes, the container’s free space is shared and can be allocated to any of the individual
volumes as needed. Each volume uses only part of the overall container, so the available
space is the total size of the container, minus the space used in all volumes in the
container.

103Apple Platform Security

Multiple volumes
In macOS 10.15 or later, an APFS container used to start up the Mac must contain at least
five volumes, the first three of which are hidden from the user:

•	 Preboot volume: This volume is unencrypted and contains data needed for booting each
system volume in the container.

•	 VM volume: This volume is unencrypted and is used by macOS for storing encrypted
swap files.

•	 Recovery volume: This volume is unencrypted and must be available without unlocking a
system volume to start up in recoveryOS.

•	 System volume: Contains the following:

•	 All the necessary files to start up the Mac

•	 All apps installed natively by macOS (apps that used to reside in the /Applications
folder now reside in /System/Applications)

Note: By default, no process can write to the System volume, even Apple system
processes.

•	 Data volume: Contains data that is subject to change, such as:

•	 Any data inside the user’s folder, including photos, music, videos, and documents

•	 Apps the user installed, including AppleScript and Automator applications

•	 Custom frameworks and daemons installed by the user, organization, or third-party
apps

•	 Other locations owned and writable by the user, as /Applications, /Library, /Users, /
Volumes, /usr/local, /private, /var, and /tmp

A data volume is created for each additional system volume. The preboot, VM, and
recovery volumes are all shared and not duplicated.

In macOS 11 or later, the system volume is captured in a snapshot. The operating system
boots from a snapshot of the system volume, not just from a read-only mount of the
mutable system volume.

In iOS and iPadOS, storage is divided into at least two APFS volumes:

•	 System volume

•	 Data volume

104Apple Platform Security

Keychain data protection
Many apps need to handle passwords and other short but sensitive bits of data, such as
keys and login tokens. The keychain provides a secure way to store these items.
The various Apple operating systems use differing mechanisms to enforce the guarantees
associated with the different keychain protection classes. In macOS (including a Mac with
Apple silicon), Data Protection isn’t used directly to enforce these guarantees.

Overview
Keychain items are encrypted using two different AES-256-GCM keys: a table key
(metadata) and a per-row key (secret key). Keychain metadata (all attributes other than
kSecValue) is encrypted with the metadata key to speed searches, and the secret value
(kSecValueData) is encrypted with the secret key. The metadata key is protected by the
Secure Enclave but is cached in the Application Processor to allow fast queries of the
keychain. The secret key always requires a round trip through the Secure Enclave.

The keychain is implemented as a SQLite database, stored on the file system. There is only
one database, and the securityd daemon determines which keychain items each process
or app can access. Keychain Access APIs result in calls to the daemon, which queries
the app’s “Keychain-access-groups,” “application-identifier,” and “application-group”
entitlements. Rather than limiting access to a single process, access groups allow keychain
items to be shared between apps.

Keychain items can be shared only between apps from the same developer. To share
keychain items, third-party apps use access groups with a prefix allocated to them through
the Apple Developer Program in their application groups. The prefix requirement and
application group uniqueness are enforced through code signing, provisioning profiles,
and the Apple Developer Program.

Keychain data is protected using a class structure similar to the one used in file Data
Protection. These classes have behaviors equivalent to file Data Protection classes but use
distinct keys and functions.

Availability File data protection Keychain data protection

When unlocked NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked

While locked NSFileProtectionComplete

UnlessOpen

After first unlock NSFileProtectionComplete

UntilFirstUserAuthentication

kSecAttrAccessibleAfterFirstUnlock

Always NSFileProtectionNone kSecAttrAccessibleAlways

Passcode
enabled

kSecAttrAccessibleWhen

PasscodeSetThisDeviceOnly

https://developer.apple.com/

105Apple Platform Security

Apps that use background refresh services can use kSecAttrAccessibleAfterFirstUnlock for
keychain items that need to be accessed during background updates.

The class kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly behaves the same
as kSecAttrAccessibleWhenUnlocked; however, it’s available only when the device is
configured with a passcode. This class exists only in the system keybag; they:

•	 Don’t sync to iCloud Keychain

•	 Aren’t backed up

•	 Aren’t included in escrow keybags

If the passcode is removed or reset, the items are rendered useless by discarding the
class keys.

Other keychain classes have a “This device only” counterpart, which is always protected
with the UID when being copied from the device during a backup, rendering it useless if
it’s restored to a different device. Apple has carefully balanced security and usability by
choosing keychain classes that vary according to the type of information being secured
and when it’s needed by iOS and iPadOS.

106Apple Platform Security

Keychain data class protections
The class protections listed below are enforced for keychain items.

Item Accessible

Wi-Fi passwords After first unlock

Mail accounts After first unlock

Microsoft Exchange ActiveSync accounts After first unlock

VPN passwords After first unlock

LDAP, CalDAV, CardDAV After first unlock

Social network account tokens After first unlock

Handoff advertisement encryption keys After first unlock

iCloud token After first unlock

iMessage keys After first unlock

Home sharing password When unlocked

Safari passwords When unlocked

Safari bookmarks When unlocked

Finder/iTunes backup When unlocked, nonmigratory

VPN certificates After first unlock, nonmigratory

Bluetooth® keys Always, nonmigratory

Apple Push Notification service (APNs) token Always, nonmigratory

iCloud certificates and private key Always, nonmigratory

SIM PIN Always, nonmigratory

Find My token Always

Voicemail Always

On macOS, all keychain items installed by configuration profiles are always available.
On iOS and iPadOS, keychain items installed by a configuration profile have different
accessibility depending on their type, how they’re referenced, and when they were
installed. By default, keychain items installed using configuration profiles are available after
first unlock and nonmigratory. However, a keychain item installed by a configuration profile
is always available if it:

•	 Was installed before upgrading to iOS 15, iPadOS 15, or later

•	 Is a certificate (not an identity)

•	 Is an identity referenced by the IdentityCertificateUUID in a com.apple.mdm
payload

107Apple Platform Security

Keychain access control
Keychains can use access control lists (ACLs) to set policies for accessibility and
authentication requirements. Items can establish conditions that require user presence
by specifying that they can’t be accessed unless authenticated using Face ID, Touch ID,
or by entering the device’s passcode or password. Access to items can also be limited by
specifying that Face ID or Touch ID enrollment hasn’t changed since the item was added.
This limitation helps prevent an attacker from adding their own fingerprint to access a
keychain item. ACLs are evaluated inside the Secure Enclave and are released to the kernel
only if their specified constraints are met.

Keychain architecture in macOS
macOS also provides access to the keychain to conveniently and securely stores user
names and passwords, digital identities, encryption keys, and secure notes. It can be
accessed by opening the Keychain Access app in /Applications/Utilities/. Using a keychain
eliminates the requirement to enter—or even remember—the credentials for each resource.
An initial default keychain is created for each Mac user, though users can create other
keychains for specific purposes.

In addition to relying on user keychains, macOS relies on a number of system-level
keychains that maintain authentication assets that aren’t user specific, such as network
credentials and public key infrastructure (PKI) identities. One of these keychains,
System Roots, is immutable and stores internet PKI root certificate authority (CA)
certificates to facilitate common tasks like online banking and e-commerce. The user can
similarly deploy internally provisioned CA certificates to managed Mac computers to help
validate internal sites and services.

108Apple Platform Security

FileVault

Volume encryption with FileVault in macOS
Mac computers offer FileVault, a built-in encryption capability, to secure all data at rest.
FileVault uses the AES-XTS data encryption algorithm to protect full volumes on internal
and removable storage devices.

FileVault on a Mac with Apple silicon is implemented using Data Protection Class C with
a volume key. On a Mac with Apple silicon and a Mac with an Apple T2 Security Chip,
encrypted internal storage devices directly connected to the Secure Enclave leverage
its hardware security capabilities as well as that of the AES engine. After a user turns on
FileVault on a Mac, their credentials are required during the boot process.

Note: For Mac computers (1) prior to those with a T2 chip, or (2) with internal storage that
didn’t originally ship with the Mac, or (3) with attached external storage: After FileVault is
turned on, all existing files and any further data written are encrypted. Data that was added
and then deleted before turning on FileVault isn’t encrypted and may be recoverable with
forensic data recovery tools.

109Apple Platform Security

Internal storage with FileVault turned on
Without valid login credentials or a cryptographic recovery key, the internal APFS volumes
remain encrypted and are protected from unauthorized access even if the physical storage
device is removed and connected to another computer. In macOS 10.15, this includes
both the system volume and the data volume. Starting in macOS 11, the system volume
is protected by the signed system volume (SSV) feature, but the data volume remains
protected by encryption. Internal volume encryption on a Mac with Apple silicon as well as
those with the T2 chip is implemented by constructing and managing a hierarchy of keys,
and builds on the hardware encryption technologies built into the chip. This hierarchy of
keys is designed to simultaneously achieve four goals:

•	 Require the user’s password for decryption

•	 Protect the system from a brute-force attack directly against storage media removed
from Mac

•	 Provide a swift and secure method for wiping content via deletion of necessary
cryptographic material

•	 Enable users to change their password (and in turn the cryptographic keys used to
protect their files) without requiring reencryption of the entire volume

On a Mac with Apple silicon a Mac with a T2 chip, all FileVault key handling occurs in the
Secure Enclave; encryption keys are never directly exposed to the Intel CPU. By default,
all APFS volumes are created with a volume encryption key. Volume and metadata contents
are encrypted with this volume encryption key, which is wrapped with a key encryption key
(KEK). The KEK is protected by a combination of the user’s password and hardware UID
when FileVault is turned on.

110Apple Platform Security

Internal storage with FileVault turned off
If FileVault isn’t turned on in a Mac with Apple silicon or a Mac with the T2 chip during the
initial Setup Assistant process, the volume is still encrypted but the volume encryption key
is protected only by the hardware UID in the Secure Enclave.

If FileVault is turned on later—a process that is immediate because the data has already
been encrypted—an anti-replay mechanism helps prevent the old key (based on hardware
UID only) from being used to decrypt the volume. The volume is then protected by a
combination of the user password with the hardware UID as previously described.

Deleting FileVault volumes
When deleting a volume, its volume encryption key is securely deleted by the Secure
Enclave. This helps prevent future access with this key even by the Secure Enclave.
In addition, all volume encryption keys are wrapped with a media key. The media key
doesn’t provide additional confidentiality of data; instead, it’s designed to enable swift and
secure deletion of data because without it decryption is impossible.

On a Mac with Apple silicon and a Mac with the T2 chip, the media key is guaranteed to
be erased by the Secure Enclave supported technology—for example by remote MDM
commands. Erasing the media key in this manner renders the volume cryptographically
inaccessible.

Removable storage devices
Encryption of removable storage devices doesn’t utilize the security capabilities of the
Secure Enclave, and its encryption is performed in the same manner as an Intel-based Mac
without the T2 chip.

111Apple Platform Security

Managing FileVault in macOS
In macOS, organizations can manage FileVault using SecureToken or Bootstrap Token.

Using Secure Token
Apple File System (APFS) in macOS 10.13 or later changes how FileVault encryption keys
are generated. In previous versions of macOS on CoreStorage volumes, the keys used
in the FileVault encryption process were created when a user or organization turned on
FileVault on a Mac. In macOS on APFS volumes, the keys are generated either during user
creation, setting the first user’s password, or during the first login by a user of the Mac.
This implementation of the encryption keys, when they’re generated, and how they’re
stored are all part of a feature known as Secure Token. Specifically, a secure token is a
wrapped version of a key encryption key (KEK) protected by a userʼs password.

When deploying FileVault on APFS, the user can continue to:

•	 Use existing tools and processes, such as a personal recovery key (PRK) that can be
stored with a mobile device management (MDM) solution for escrow

•	 Defer enablement of FileVault until a user logs into or out of the Mac

•	 Create and use an institutional recovery key (IRK)

In macOS 11, setting the initial password for the very first user on the Mac results in
that user being granted a secure token. In some workflows, that may not be the desired
behavior, as previously, granting the first secure token would have required the user
account to log in. To prevent this from happening, add ;DisabledTags;SecureToken to
the programmatically created user’s AuthenticationAuthority attribute prior to setting
the user’s password, as shown below:

sudo dscl . append /Users/<user name> AuthenticationAuthority
";DisabledTags;SecureToken"

Using Bootstrap Token
macOS 10.15 introduced a new feature—Bootstrap Token—to help with granting a secure
token to both mobile accounts and the optional device enrollment-created administrator
account (“managed administrator”). In macOS 11, a bootstrap token can grant a secure
token to any user logging in to a Mac computer, including local user accounts. Using the
Bootstrap Token feature of macOS 10.15 or later requires:

•	 Mac enrollment in MDM using Apple School Manager or Apple Business Manager,
which makes the Mac supervised

•	 MDM vendor support

In macOS 10.15.4 or later, a bootstrap token is generated and escrowed to MDM on the
first login by any user who is Secure Token–enabled if the MDM solution supports the
feature. A bootstrap token can also be generated and escrowed to MDM using the profiles
command-line tool, if needed.

In macOS 11, a bootstrap token may also be used for more than just granting secure token
to user accounts. On a Mac with Apple silicon, a bootstrap token, if available, can be used
to authorize the installation of both kernel extensions and software updates when managed
using MDM.

112Apple Platform Security

Institutional versus personal recovery keys
FileVault on both CoreStorage and APFS volumes supports using an institutional recovery
key (IRK, previously known as a FileVault Master identity) to unlock the volume.
Though an IRK is useful for command-line operations to unlock a volume or turn off
FileVault altogether, its utility for organizations is limited, especially in recent versions
of macOS. And on a Mac with Apple silicon, IRKs provide no functional value for two
primary reasons: First, IRKs can’t be used to access recoveryOS, and second, because
target disk mode is no longer supported, the volume can’t be unlocked by connecting it to
another Mac. For those reasons and more, the use of an IRK is no longer recommended for
institutional management of FileVault on Mac computers. Instead, a personal recovery key
(PRK) should be used.

113Apple Platform Security

How Apple protects users’ personal data

Protecting app access to user data
In addition to encrypting data at rest, Apple devices help prevent apps from accessing a
user’s personal information without permission using various technologies including Data
Vault. In Settings in iOS and iPadOS, and in macOS System Settings (macOS 13 or later) or
System Preferences (macOS 12 or earlier), users can see which apps they’ve permitted to
access certain information as well as grant or revoke any future access. Access is enforced
in the following cases:

•	 iOS, iPadOS, and macOS: Calendars, Camera, Contacts, Microphone, Photos,
Reminders, and Speech recognition

•	 iOS and iPadOS: Bluetooth, Home, Media, Media apps and Apple Music, Motion and
fitness

•	 iOS and watchOS: Health

•	 macOS: Input monitoring (for example, keyboard strokes), Prompt, Screen recording
(for example, static screen shots and video), and System Settings (macOS 13 or later)
or System Preferences (macOS 12 or earlier)

In iOS 13.4 or later and iPadOS 13.4 or later, all third-party apps automatically have their
data protected in a Data Vault. Data Vault helps protect against unauthorized access to the
data, even from processes that aren’t themselves sandboxed. Additional classes in iOS 15
or later include Local Network, Nearby Interactions, Research Sensor & Usage Data, and
Focus.

If the user signs in to iCloud, apps in iOS and iPadOS are granted access by default to
iCloud Drive. Users may control each app’s access under iCloud in Settings. iOS and
iPadOS also provide restrictions designed to prevent data movement between apps and
accounts installed by a mobile device management (MDM) solution and those installed by
the user.

114Apple Platform Security

Protecting access to user’s health data
HealthKit provides a central repository for health and fitness data on iPhone and
Apple Watch. HealthKit also works directly with health and fitness devices, such as
compatible Bluetooth Low Energy (BLE) heart rate monitors and the motion coprocessor
built into many iOS devices. All HealthKit interaction with health and fitness apps,
healthcare institutions, and health and fitness devices require permission of the user. This
data is stored in the Data Protection class Protected Unless Open. Access to the data is
relinquished 10 minutes after the device locks, and data becomes accessible the next time
user enters their passcode or uses Face ID or Touch ID to unlock the device.

Collecting and storing health and fitness data
HealthKit also collects and stores management data, such as access permissions for apps,
names of devices connected to HealthKit, and scheduling information used to launch apps
when new data is available. This data is stored in the Data Protection class Protected Until
First User Authentication. Temporary journal files store health records that are generated
when the device is locked, such as when the user is exercising. These are stored in the
Data Protection class Protected Unless Open. When the device is unlocked, the temporary
journal files are imported into the primary health databases, then deleted when the merge
is completed.

Health data can be stored in iCloud. End-to-end encryption for Health data requires iOS 12
or later and two-factor authentication. Otherwise, the user’s data is still encrypted in
storage and transmission but isn’t encrypted end-to-end. After the user turns on two-
factor authentication and updates to iOS 12 or later, the user’s health data is migrated to
end-to-end encryption.

If the user backs up their device using the Finder (macOS 10.15 or later) or iTunes
(in macOS 10.14 or earlier), health data is stored only if the backup is encrypted.

Clinical health records
Users can sign in to supported health systems within the Health app to obtain a copy
of their clinical health records. When connecting a user to a health system, the user
authenticates using OAuth 2 client credentials. After connecting, clinical health record data
is downloaded directly from the health institution using a TLS 1.3 protected connection.
Once downloaded, clinical health records are securely stored alongside other health data.

Health data authenticity
Data stored in the database includes metadata to track the provenance of each data
record. This metadata includes an app identifier that identifies which app stored the
record. Additionally, an optional metadata item can contain a digitally signed copy of the
record. This is intended to provide data authenticity for records generated by a trusted
device. The format used for the digital signature is the Cryptographic Message Syntax
(CMS) specified in RFC 5652.

https://www.ietf.org/rfc/rfc5652.txt

115Apple Platform Security

Health data access by third-party apps
Access to the HealthKit API is controlled with entitlements, and apps must conform to
restrictions about how the data is used. For example, apps aren’t allowed to use health
data for advertising. Apps are also required to provide users with a privacy policy that
details its use of health data.

Access to health data by apps is controlled by the user’s Privacy settings. Users are asked
to grant access when apps request access to health data, similar to Contacts, Photos,
and other iOS data sources. However, with health data, apps are granted separate access
for reading and writing data, as well as separate access for each type of health data. Users
can view, and revoke, permissions they’ve granted for accessing health data under Settings
> Health > Data Access & Devices.

If granted permission to write data, apps can also read the data they write. If granted
permission to read data, apps can read data written by all sources. However, apps can’t
determine access granted to other apps. In addition, apps can’t conclusively tell whether
they’ve been granted read access to health data. When an app doesn’t have read access,
all queries return no data—the same response that an empty database would return. This is
designed to prevent apps from inferring the user’s health status by learning which types of
data the user is tracking.

Medical ID for users
The Health app gives users the option of filling out a Medical ID form with information that
could be important during a medical emergency. The information is entered or updated
manually and isn’t synced with the information in the health databases.

The Medical ID information is viewed by tapping the Emergency button on the Lock Screen.
The information is stored on the device using the Data Protection class No Protection so
that it’s accessible without having to enter the device passcode. Medical ID is an optional
feature that lets users decide how to balance both safety and privacy concerns. This
data is backed up in iCloud Backup in iOS 13 or earlier. In iOS 14, Medical ID is synced
between devices using CloudKit and has the same encryption characteristics as the rest of
health data.

Health sharing
In iOS 15, the Health app gives users the option sharing their Health data with other
users. Health data is shared between the two users using end-to-end iCloud encryption,
and Apple can’t access data that is sent through Health sharing. To use the feature, both
the sending and receiving users must be running iOS 15 or later and have two-factor
authentication enabled.

Users can also choose to share their Health data with their healthcare provider using
the Share with Provider feature in the Health app. Data shared using this feature is made
available only to the health institutions selected by the user using end-to-end encryption,
and Apple doesn’t maintain or have access to the encryption keys to decrypt, view,
or otherwise access the Health data shared through the Share with Provider feature.
Further details about how the design of this service protects users’ Health data can be
found in the Security and Privacy section of the Apple Registration Guide for Healthcare
Organizations.

https://support.apple.com/guide/healthregister/apd3f5bf3d83

116Apple Platform Security

Digital signing and encryption

Access control lists
Keychain data is partitioned and protected with access control lists (ACLs). As a result,
credentials stored by third-party apps can’t be accessed by apps with different identities
unless the user explicitly approves them. This protection provides a mechanism for
securing authentication credentials in Apple devices across a range of apps and services
within the organization.

Mail
In the Mail app, users can send messages that are digitally signed and encrypted. Mail
automatically discovers appropriate RFC 5322 case-sensitive email address subject
or subject alternative names on digital signing and encryption certificates on attached
Personal Identification Verification (PIV) tokens in compatible smart cards. If a configured
email account matches an email address on a digital signing or encryption certificate on an
attached PIV token, Mail automatically displays the signing button in the toolbar of a new
message window. If Mail has the recipient’s email encryption certificate or can discover it
in the Microsoft Exchange global address list (GAL), an unlocked icon appears in the new
message toolbar. A locked lock icon indicates the message will be sent encrypted with the
recipient’s public key.

Per-message S/MIME
iOS, iPadOS, and macOS support per-message S/MIME. This means that S/MIME users can
choose to always sign and encrypt messages by default or to selectively sign and encrypt
individual messages.

Identities used with S/MIME can be delivered to Apple devices using a configuration profile,
a mobile device management (MDM) solution, the Simple Certificate Enrollment Protocol
(SCEP), or Microsoft Active Directory Certificate Authority.

https://www.ietf.org/rfc/rfc5322.txt

117Apple Platform Security

Smart cards
macOS 10.12 or later includes native support for PIV cards. These cards are widely used
in commercial and government organizations for two-factor authentication, digital signing,
and encryption.

Smart cards include one or more digital identities that have a pair of public and private
keys and an associated certificate. Unlocking a smart card with the personal identification
number (PIN) provides access to the private keys used for authentication, encryption,
and signing operations. The certificate determines what a key can be used for, what
attributes are associated with it, and whether it’s validated (signed) by a certificate
authority (CA) certificate.

Smart cards can be used for two-factor authentication. The two factors needed to unlock
a card are “something the user has” (the card) and “something the user knows” (the PIN).
macOS 10.12 or later also has native support for smart card Login Window authentication
and client certificate authentication to websites on Safari. It also supports Kerberos
authentication using key pairs (PKINIT) for single sign-on to Kerberos-supported services.
To learn more about smart cards and macOS, see Intro to smart card integration in
Apple Platform Deployment.

Encrypted disk images
In macOS, encrypted disk images serve as secure containers in which users can store or
transfer sensitive documents and other files. Encrypted disk images are created using Disk
Utility, located in /Applications/Utilities/. Disk images can be encrypted using either
128-bit or 256-bit AES encryption. Because a mounted disk image is treated as a local
volume connected to a Mac, users can copy, move, and open files and folders stored in it.
As with FileVault, the contents of a disk image are encrypted and decrypted in real time.
With encrypted disk images, users can safely exchange documents, files, and folders
by saving an encrypted disk image to removable media, sending it as a mail message
attachment, or storing it on a remote server. For more information on encrypted disk
images, see the Disk Utility User Guide.

https://support.apple.com/guide/deployment/depd0b888248
https://support.apple.com/guide/disk-utility/

118Apple Platform Security

App security

App security overview
Today, apps are among the most critical elements of a security architecture. Even as apps
provide amazing productivity benefits for users, they also have the potential to negatively
impact system security, stability, and user data if they’re not handled properly.

Because of this, Apple provides layers of protection to help ensure that apps are free
of known malware and haven’t been tampered with. Additional protections enforce that
access from apps to user data is carefully mediated. These security controls provide a
stable, secure platform for apps, enabling thousands of developers to deliver hundreds of
thousands of apps for iOS, iPadOS, and macOS—all without impacting system integrity.
And users can access these apps on their Apple devices without undue fear of viruses,
malware, or unauthorized attacks.

On iPhone and iPad, all apps are obtained from the App Store—and all apps are
sandboxed—to provide the tightest controls.

On Mac, many apps are obtained from the App Store, but Mac users also download and use
apps from the internet. To safely support internet downloading, macOS layers additional
controls. First, by default in macOS 10.15 or later, all Mac apps need to be notarized by
Apple to launch. This requirement helps ensure that these apps are free of known malware,
without requiring that the apps be provided through the App Store. Second, macOS
includes state-of-the-art antivirus protection to block—and if necessary remove—malware.

As an additional control across platforms, sandboxing helps protect user data from
unauthorized access by apps. And in macOS, data in critical areas is itself protected—
which helps ensure that users remain in control of access to files in Desktop, Documents,
Downloads, and other areas from all apps, whether the apps attempting access are
themselves sandboxed or not.

Native capability Third-party equivalent

Plug-in unapproved list, Safari extension unapproved
list

Virus/Malware definitions

File Quarantine Virus/Malware definitions

XProtect/YARA signatures Virus/Malware definitions; endpoint protection

Gatekeeper Endpoint protection; enforces code signing on apps to
help ensure that only trusted software runs

119Apple Platform Security

Native capability Third-party equivalent

eficheck

(Necessary for a Mac without an Apple T2 Security
Chip)

Endpoint protection; rootkit detection

Application firewall Endpoint protection; firewalling

Packet Filter (pf) Firewall solutions

System Integrity Protection Built into macOS

Mandatory Access Controls Built into macOS

Kext exclude list Built into macOS

Mandatory app code signing Built into macOS

App notarization Built into macOS

120Apple Platform Security

App security in iOS and iPadOS

Intro to app security for iOS and iPadOS
Unlike other mobile platforms, iOS and iPadOS don’t allow users to install potentially
malicious unsigned apps from websites or to run untrusted apps. Instead, (outside the
EU) all apps must be downloaded from the App Store, where all apps come from identified
developers and must pass automated and human review. At runtime, code signature checks
of all executable memory pages are made as pages are loaded to help ensure that an app
hasn’t been modified since it was installed or last updated.

After an app is verified to be from an approved source, iOS and iPadOS enforce security
measures designed to prevent it from compromising other apps or the rest of the system.

About App Store security
The App Store is a trusted place where users can safely discover and download apps.
On the App Store, apps come from identified developers who have agreed to follow Apple
guidelines, and are securely distributed to users with cryptographic guarantees against
modification. Every single app and each app update is reviewed to evaluate whether
it meets requirements for privacy, security, and safety. This process, which is being
constantly improved, is designed to protect users by keeping malware, cybercriminals,
and scammers out of the App Store. In addition, apps designed for children must follow
strict guidelines around data collection and security designed to keep children safe, and
must be tightly integrated with iOS and iPadOS parental control features.

App Store security protections include:

•	 Automated scans for known malware: To help prevent it from ever making it onto the
App Store and thus ever reaching or harming users.

•	 Human review by a team of experts: To review the app description—including marketing
text and screenshots—for accuracy. This creates a high barrier against the most
common scams used to distribute malware: misrepresenting the malware as a popular
app, or claiming to offer enticing features that aren’t actually provided.

•	 Manual checks: To check that the app doesn’t unnecessarily request access to sensitive
data and extra evaluation of apps targeted at children to help ensure they comply with
stringent data collection and safety rules.

•	 Trustworthy, centralized user reviews: To help surface issues and significantly reduce
the attacker’s prospects of misleading many users. Even if a malicious app were able to
completely hide its behavior during the review process, users of the app who encounter
and report issues alert others — and Apple — thereby providing another avenue for
detection. The App Store aggressively combats fraudulent reviews to improve the value
of this signal.

121Apple Platform Security

•	 Processes for correction and removal: In case should issues occur. In a case where an
app makes it into the App Store but is then later discovered to violate guidelines,
Apple works with the developer to quickly resolve the issue. In dangerous cases,
involving fraud and malicious activity, the app is immediately removed from the App
Store and users who downloaded the apps can be notified of the app’s malicious
behavior.

Security of apps on iOS and iPadOS relies on a combination of all layers—robust App
Review to help prevent the installation of malicious apps, and robust platform protections
to limit the damage malicious apps can inflict. The security designed into iOS and iPadOS
provides users with powerful protections that are the best of any consumer device, but
those protections aren’t engineered to protect against choices a user might be tricked into
making. App Review enforces the App Store policies designed to protect users from apps
that may attempt to harm them or trick them into granting access to sensitive data. And,
in the very serious instances of malicious apps trying to bypass on-device protections,
App Review makes it harder for them to get on users’ devices in the first place.

Though App Store security measures alone can never be perfect, as part of a defense-in-
depth strategy for platform security they contribute to making widespread attacks against
iOS and iPadOS users impractical and uneconomical for financially-driven attackers.
By reviewing every app before it becomes available on the App Store to help ensure it’s
free of malware and accurately represented to users, and by swiftly removing apps from
distribution if they are found to be harmful and limiting the spread of future variants,
Apple protects the security of the ecosystem and provides peace of mind to customers.

122Apple Platform Security

App code signing process in iOS and iPadOS
In iOS and iPadOS, Apple offers app security through such things as mandatory code
signing, strict developer sign-in, more.

Mandatory code signing
After the iOS or iPadOS kernel has started, it controls which user processes and apps
can be run. To help ensure that all apps come from a known and approved source and
haven’t been tampered with, iOS and iPadOS require that all executable code be signed
using an Apple-issued certificate. Apps provided with the device, like Mail and Safari,
are signed by Apple. Third-party apps must also be validated and signed using an Apple-
issued certificate. Mandatory code signing extends the concept of chain of trust from the
operating system to apps and helps prevent third-party apps from loading unsigned code
resources or using self-modifying code.

How developers sign their apps
Developers can sign their apps through certificate validation (through the Apple Developer
Program). They can also embed frameworks inside their apps and have that code validated
with an Apple-issued certificate (through a team identifier string).

•	 Certificate validation: To develop and install apps in iPhone or iPad devices, developers
must register with Apple and join the Apple Developer Program. The real-world identity
of each developer, whether an individual or a business, is verified by Apple before
their certificate is issued. This certificate allows developers to sign apps and submit
them to the App Store for distribution. As a result, all apps in the App Store have
been submitted by an identifiable person or organization, serving as a deterrent to
the creation of malicious apps. They have also been reviewed by Apple to help ensure
they generally operate as described and don’t contain obvious bugs or other notable
problems. In addition to the technology already discussed, this curation process gives
users confidence in the quality of the apps they buy.

•	 Code signature validation: iOS and iPadOS allow developers to embed frameworks
inside of their apps, which can be used by the app itself or by extensions embedded
within the app. To protect the system and other apps from loading third-party code
inside of their address space, the system performs a code signature validation of all
the dynamic libraries that a process links against at launch time. This verification is
accomplished through the team identifier (Team ID), which is extracted from an Apple-
issued certificate. A team identifier is a 10-character alphanumeric string—for example,
1A2B3C4D5F. A program may link against any platform library that ships with the
system or any library with the same team identifier in its code signature as the main
executable. Because the executables shipping as part of the system don’t have a team
identifier, they can only link against libraries that ship with the system itself.

123Apple Platform Security

Verifying proprietary in-house apps
Eligible businesses have the ability to write proprietary in-house apps for use within their
organization and to distribute them to their employees. Businesses and organizations can
apply to the Apple Developer Enterprise Program (ADEP). For more information and to
review eligibility requirements, see the Apple Developer Enterprise Program website.
After an organization becomes a member of ADEP, it can register to obtain a provisioning
profile that permits proprietary in-house apps to run on devices it authorizes.

Users must have the provisioning profile installed to run these apps. This helps ensure
that only the organization’s intended users are able to load the apps onto their iPhone
or iPad. Apps installed through mobile device management (MDM) are implicitly trusted
because the relationship between the organization and the device is already established.
Otherwise, users have to approve the app’s provisioning profile in Settings. Organizations
can also restrict users from approving apps from unknown developers. On first launch of
any proprietary in-house app, the device must receive positive confirmation from Apple
that the app is allowed to run.

https://developer.apple.com/programs/enterprise/

124Apple Platform Security

Security of runtime process in iOS and iPadOS
iOS and iPadOS help ensure runtime security by using a “sandbox,” declared entitlements,
and Address Space Layout Randomization (ASLR).

Sandboxing
All third-party apps are “sandboxed,” so they are restricted from accessing files stored by
other apps or from making changes to the device. Sandboxing is designed to prevent apps
from gathering or modifying information stored by other apps. Each app has a unique home
directory for its files, which is randomly assigned when the app is installed. If a third-party
app needs to access information other than its own, it does so only by using services
explicitly provided by iOS and iPadOS.

System files and resources are also shielded from the users’ apps. Most iOS and iPadOS
system files and resources run as the nonprivileged user “mobile,” as do all third-party
apps. The entire operating system partition is mounted as read-only. Unnecessary tools,
such as remote login services, aren’t included in the system software, and APIs don’t allow
apps to escalate their own privileges to modify other apps or iOS and iPadOS.

Use of entitlements
Access by third-party apps to user information, and to features such as iCloud and
extensibility, is controlled using declared entitlements. Entitlements are key-value pairs
that are signed in to an app and allow authentication beyond runtime factors, like UNIX
user ID. Since entitlements are digitally signed, they can’t be changed. Entitlements are
used extensively by system apps and daemons to perform specific privileged operations
that would otherwise require the process to run as root. This greatly reduces the potential
for privilege escalation by a compromised system app or daemon.

In addition, apps can only perform background processing through system-provided APIs.
This allows apps to continue to function without degrading performance or dramatically
impacting battery life.

Address Space Layout Randomization
Address Space Layout Randomization (ASLR) helps protect against the exploitation of
memory corruption bugs. Built-in apps use ASLR to help randomize all memory regions
upon launch. In addition to work upon launch, ASLR randomly arranges the memory
addresses of executable code, system libraries, and related programming constructs,
further reducing the likelihood of many exploits. For example, a return-to-libc attack
attempts to trick a device into executing malicious code by manipulating memory
addresses of the stack and system libraries. Randomizing the placement of these makes
the attack more difficult to execute, especially across multiple devices. Xcode, and the iOS
or iPadOS development environments, automatically compile third-party programs with
ASLR support turned on.

125Apple Platform Security

Execute Never feature
Further protection is provided by iOS and iPadOS using ARM’s Execute Never (XN) feature,
which marks memory pages as nonexecutable. Memory pages marked as both writable and
executable can be used only by apps under tightly controlled conditions: The kernel checks
for the presence of the Apple-only dynamic code-signing entitlement. Even then, only a
single mmap call can be made to request an executable and writable page, which is given
a randomized address. Safari uses this functionality for its JavaScript just-in-time (JIT)
compiler.

126Apple Platform Security

Supporting extensions in iOS, iPadOS, and macOS
iOS, iPadOS, and macOS allow apps to provide functionality to other apps by providing
extensions. Extensions are special-purpose signed executable binaries packaged within
an app. During installation, the system automatically detects extensions and makes them
available to other apps using a matching system.

Extension points
A system area that supports extensions is called an extension point. Each extension point
provides APIs and enforces policies for that area. The system determines which extensions
are available based on extension point–specific matching rules. The system automatically
launches extension processes as needed and manages their lifetime. Entitlements can be
used to restrict extension availability to particular system apps. For example, a Today view
widget appears only in Notification Center, and a sharing extension is available only from
the Sharing pane. Examples of extension points are Today widgets, Share, Actions, Photo
Editing, File Provider, and Custom Keyboard.

How extensions communicate
Extensions run in their own address space. Communication between the extension and
the app from which it was activated uses interprocess communications mediated by
the system framework. They don’t have access to each other’s files or memory spaces.
Extensions are designed to be isolated from each other, from their containing apps,
and from the apps that use them. They are sandboxed like any other third-party app and
have a container separate from the containing app’s container. However, they share the
same access to privacy controls as the container app. So if a user grants Contacts access
to an app, this grant is extended to the extensions that are embedded within the app but
not to the extensions activated by the app.

How custom keyboards are used
Custom keyboards are a special type of extension, one that’s enabled by the user for the
entire system. After a keyboard extension is enabled, it’s used for any text field except
the passcode input and any secure text view. To restrict the transfer of user data, custom
keyboards run by default in a very restrictive sandbox that blocks access to the network,
to services that perform network operations on behalf of a process, and to APIs that would
allow the extension to exfiltrate typing data. Developers of custom keyboards can request
that their extension have Open Access, which lets the system run the extension in the
default sandbox after getting consent from the user.

MDM and extensions
For devices enrolled in a mobile device management (MDM) solution, document and
keyboard extensions obey Managed Open In rules. For example, the MDM solution can help
prevent users from exporting a document from a managed app to an unmanaged Document
Provider, or help prevent them from using an unmanaged keyboard with a managed app.
Additionally, app developers can prevent the use of third-party keyboard extensions within
their app.

127Apple Platform Security

App protection and app groups in iOS and iPadOS
In iOS and iPadOS, organizations can protect apps securely by using the IOS SDK and by
joining an App Group at the Apple Developer Portal.

Adopting Data Protection in apps
The iOS Software Development Kit (SDK) for iOS and iPadOS offers a full suite of APIs that
make it easy for third-party and in-house developers to adopt Data Protection and help
ensure the highest level of protection in their apps. Data Protection is available for file and
database APIs, including NSFileManager, CoreData, NSData, and SQLite.

The Mail app database (including attachments), managed books, Safari bookmarks,
app launch images, and location data are also stored through encryption, with keys
protected by the user’s passcode on their device. Calendar (excluding attachments),
Contacts, Reminders, Notes, Messages, and Photos implement the Data Protection
entitlement Protected Until First User Authentication.

User-installed apps that don’t opt in to a specific Data Protection class receive Protected
Until First User Authentication by default.

Joining an App Group
Apps and extensions owned by a given developer account can share content when
configured to be part of an App Group. It’s up to the developer to create the appropriate
groups on the Apple Developer Portal and include the desired set of apps and extensions.
Once configured to be part of an App Group, apps have access to the following:

•	 A shared on-volume container for storage, which stays on the device as long as at least
one app from the group is installed

•	 Shared preferences

•	 Shared keychain items

The Apple Developer Portal helps ensure that App group IDs (GIDs) are unique across the
app ecosystem.

128Apple Platform Security

App security in macOS

Intro to app security for macOS
App security in macOS consists of a number of overlapping layers—the first of which is
the option to run only signed and trusted apps from the App Store. In addition, macOS
layers protections to help ensure that apps downloaded from the internet are free of
known malware. macOS offers technologies to detect and remove malware, and offers
additional protections designed to prevent untrusted apps from accessing user data.
Apple services such as Notarization and XProtect updates are designed to help prevent
malware installation. When necessary, these services locate malware that may have at first
avoided detection and then quickly and efficiently remove it. Ultimately, macOS users are
free to operate within the security model that makes sense for them—including running
completely unsigned and untrusted code.

App code signing process in macOS
All apps from the App Store are signed by Apple. This signing is designed to ensure that
they haven’t been tampered with or altered. Apple signs any apps provided with Apple
devices.

In macOS 10.15, all apps distributed outside the App Store must be signed by the developer
using an Apple-issued Developer ID certificate (combined with a private key) and notarized
by Apple to run under the default Gatekeeper settings. Apps developed in-house should
also be signed with an Apple-issued Developer ID so that users can validate their integrity.

In macOS, code signing and notarization work independently—and can be performed by
different actors—for different goals. Code signing is performed by the developer using
their Developer ID certificate (issued by Apple). Verification of this signature proves to
the user that a developer’s software hasn’t been tampered with since the developer built
and signed it. Notarization can be performed by anyone in the software distribution chain
and proves that Apple has been provided a copy of the code to check for malware and
no known malware was found. The output of Notarization is a ticket, which is stored on
Apple servers and can be optionally stapled to the app (by anyone) without invalidating the
signature of the developer.

Mandatory Access Controls (MACs) require code signing to enable entitlements protected
by the system. For example, apps requiring access through the firewall must be code
signed with the appropriate MAC entitlement.

129Apple Platform Security

Gatekeeper and runtime protection in macOS
macOS offers the Gatekeeper technology and runtime protection to help ensure that only
trusted software runs on a user’s Mac.

Gatekeeper
macOS includes a security technology called Gatekeeper, which is designed to help ensure
that only trusted software runs on a user’s Mac. When a user downloads and opens an
app, a plug-in, or an installer package from outside the App Store, Gatekeeper verifies
that the software is from an identified developer, is notarized by Apple to be free of known
malicious content, and hasn’t been altered. Gatekeeper also requests user approval before
opening downloaded software for the first time to make sure the user hasn’t been tricked
into running executable code they believed to simply be a data file. Gatekeeper also tracks
the provenance of files written by downloaded software.

By default, Gatekeeper helps ensure that all downloaded software has been signed by the
App Store or signed by a registered developer and notarized by Apple. Both the App Store
review process and the notarization pipeline are designed to ensure that apps contain
no known malware. Therefore by default, all software in macOS is checked for known
malicious content the first time it’s opened, regardless of how it arrived on the Mac.

Users and organizations have the option to allow only software installed from the App
Store. Alternatively, users can override Gatekeeper policies to open any software unless
restricted by a mobile device management (MDM) solution. Organizations can use MDM to
configure Gatekeeper settings, including allowing software signed with alternate identities.
Gatekeeper can also be completely disabled, if necessary.

Gatekeeper also protects against the distribution of malicious plug-ins with benign
apps. Here, using the app triggers the loading of a malicious plug-in without the user’s
knowledge. When necessary, Gatekeeper opens apps from randomized, read-only
locations. This is designed to prevent the automatic loading of plug-ins distributed
alongside the app.

Runtime protection
System files, resources, and the kernel are shielded from a user’s app space. All apps from
the App Store are sandboxed to restrict access to data stored by other apps. If an app from
the App Store needs to access data from another app, it can do so only by using the APIs
and services provided by macOS.

130Apple Platform Security

Protecting against malware in macOS
Apple operates a threat intelligence process to quickly identify and block malware.

Three layers of defense
Malware defenses are structured in three layers:

1. Prevent launch or execution of malware: App Store, or Gatekeeper combined with
Notarization

2. Block malware from running on customer systems: Gatekeeper, Notarization,
and XProtect

3. Remediate malware that has executed: XProtect

The first layer of defense is designed to inhibit the distribution of malware, and prevent
it from launching even once—this is the goal of the App Store, and Gatekeeper combined
with Notarization.

The next layer of defense is to help ensure that if malware appears on any Mac,
it’s quickly identified and blocked, both to halt spread and to remediate the Mac systems
it’s already gained a foothold on. XProtect adds to this defense, along with Gatekeeper and
Notarization.

Finally, XProtect acts to remediate malware that has managed to successfully execute.

These protections, further described below, combine to support best-practice protection
from viruses and malware. There are additional protections, particularly on a Mac with
Apple silicon, to limit the potential damage of malware that does manage to execute.
See Protecting app access to user data for ways that macOS can help protect user data
from malware, and Operating system integrity for ways macOS can limit the actions
malware can take on the system.

Notarization
Notarization is a malware scanning service provided by Apple. Developers who want to
distribute apps for macOS outside the App Store submit their apps for scanning as part
of the distribution process. Apple scans this software for known malware and, if none is
found, issues a Notarization ticket. Typically, developers staple this ticket to their app so
Gatekeeper can verify and launch the app, even offline.

Apple can also issue a revocation ticket for apps known to be malicious—even if they’ve
been previously notarized. macOS regularly checks for new revocation tickets so that
Gatekeeper has the latest information and can block launch of such files. This process can
very quickly block malicious apps because updates happen in the background much more
frequently than even the background updates that push new XProtect signatures.
In addition, this protection can be applied to both apps that have been previously and
those that haven’t.

131Apple Platform Security

XProtect
macOS includes built-in antivirus technology called XProtect for the signature-based
detection and removal of malware. The system uses YARA signatures, a tool used to
conduct signature-based detection of malware, which Apple updates regularly.
Apple monitors for new malware infections and strains, and updates signatures
automatically—independent from system updates—to help defend a Mac from malware
infections. XProtect automatically detects and blocks the execution of known malware.
In macOS 10.15 or later, XProtect checks for known malicious content whenever:

•	 An app is first launched

•	 An app has been changed (in the file system)

•	 XProtect signatures are updated

When XProtect detects known malware, the software is blocked and the user is notified
and given the option to move the software to the Trash.

Note: Notarization is effective against known files (or file hashes) and can be used on
apps that have been previously launched. The signature-based rules of XProtect are more
generic than a specific file hash, so it can find variants that Apple hasn’t seen. XProtect
scans only apps that have been changed or apps at first launch.

Should malware make its way onto a Mac, XProtect also includes technology to remediate
infections. For example, it includes an engine that remediates infections based on updates
automatically delivered from Apple (as part of automatic updates of system data files and
security updates). This system removes malware upon receiving updated information,
and it continues to periodically check for infections; however, XProtect doesn’t
automatically restart the Mac. In addition, XProtect contains an advanced engine to detect
unknown malware based on behavioral analysis. Information about malware detected by
this engine, including what software was ultimately responsible for downloading it, is used
to improve XProtect signatures and macOS security.

Automatic XProtect security updates
Apple issues the updates for XProtect automatically based on the latest threat intelligence
available. By default, macOS checks for these updates daily. Notarization updates,
which are distributed using CloudKit sync are much more frequent.

How Apple responds when new malware is discovered
When new malware is discovered, a number of steps may be performed:

•	 Any associated Developer ID certificates are revoked.

•	 Notarization revocation tickets are issued for all files (apps and associated files).

•	 XProtect signatures are developed and released.

These signatures are also applied retroactively to previously notarized software,
and any new detections can result in one or more of the previous actions occurring.

Ultimately, a malware detection launches a series of steps over the next seconds, hours,
and days that follow to propagate the best protections possible to Mac users.

132Apple Platform Security

Controlling app access to files in macOS
Apple believes that users should have full transparency, consent, and control over what
apps are doing with their data. In macOS 10.15, this model is enforced by the system to
help ensure that all apps must obtain user consent before accessing files in Documents,
Downloads, Desktop, iCloud Drive, and network volumes. In macOS 10.13 or later,
apps that require access to the full storage device must be explicitly added in System
Settings (macOS 13 or later) or System Preferences (macOS 12 or earlier). In addition,
accessibility and automation capabilities require user permission to help ensure they don’t
circumvent other protections. Depending on the access policy, users may be asked,
or required, to change the setting in:

•	 In macOS 13 or later: System Settings > Privacy & Security > Privacy

•	 In macOS 12 or earlier: System Preferences > Security & Privacy > Privacy

Item User prompted by app User must edit system privacy
settings

Accessibility

Full internal storage access

Files and folders

Note: Includes Desktop, Documents,
Downloads, network volumes, and
removable volumes

Automation (Apple events)

A user who turns on FileVault on a Mac is asked to provide valid credentials before
continuing the boot process and gain access to specialized startup modes. Without valid
login credentials or a recovery key, the entire volume remains encrypted and is protected
from unauthorized access, even if the physical storage device is removed and connected to
another computer.

To protect data in an enterprise setting, IT should define and enforce FileVault
configuration policies using a mobile device management (MDM) . Organizations have
several options for managing encrypted volumes, including institutional recovery keys,
personal recovery keys (that can optionally be stored with MDM for escrow), or a
combination of both. Key rotation can also be set as a policy in MDM.

133Apple Platform Security

Secure features in the Notes app
The Notes app includes a secure notes feature—on iPhone, iPad, Mac, and the iCloud
website—that allows users to protect the contents of specific notes. Users can also
securely share notes with others.

Secure notes
Secure notes are end-to-end encrypted using a user-provided passphrase that is required
to view the notes on iOS, iPadOS, macOS devices, and the iCloud website. Each iCloud
account (including “On my” device accounts) can have a separate passphrase.

When a user secures a note, a 16-byte key is derived from the user’s passphrase using
PBKDF2 and SHA256. The note and all of its attachments are encrypted using AES with
Galois/Counter Mode (AES-GCM). New records are created in Core Data and CloudKit to
store the encrypted note, attachments, tag, and initialization vector. After the new records
are created, the original unencrypted data is deleted. Attachments that support encryption
include images, sketches, tables, maps, and websites. Notes containing other types of
attachments can’t be encrypted, and unsupported attachments can’t be added to secure
notes.

To view a secure note, the user must enter their passphrase or authenticate using Face ID
or Touch ID. After successfully authenticating the user, whether to view or create a secure
note, Notes opens a secure session. While the secure session is open, the user can view or
secure other notes without additional authentication. However, the secure session applies
only to notes protected with the provided passphrase. The user still needs to authenticate
for notes protected by a different passphrase. The secure session is closed when:

•	 The user taps the Lock Now button in Notes

•	 Notes is switched to the background for more than 3 minutes (8 minutes in macOS)

•	 The iOS or iPadOS device locks

To change the passphrase on a secure note, the user must enter the current passphrase,
because Face ID and Touch ID aren’t available when changing the passphrase. After
choosing a new passphrase, the Notes app rewraps, in the same account, the keys of all
existing notes that are encrypted by the previous passphrase.

If a user mistypes the passphrase three times in a row, Notes shows a user-supplied hint if
one was provided by the user at setup. If the user still doesn’t remember their passphrase,
they can reset it in Notes settings. This feature allows users to create new secure
notes with a new passphrase, but it won’t allow them to see previously secured notes.
The previously secured notes can still be viewed if the old passphrase is remembered.
Resetting the passphrase requires the user’s iCloud account passphrase.

Shared notes
Notes that aren’t end-to-end encrypted with a passphrase can be shared with others.
Shared notes still use the CloudKit encrypted data type for any text or attachments that
the user puts in a note. Assets are always encrypted with a key that’s encrypted in the
CKRecord. Metadata, such as the creation and modification dates, aren’t encrypted.
CloudKit manages the process by which participants can encrypt and decrypt each
other’s data.

134Apple Platform Security

Secure features in the Shortcuts app
In the Shortcuts app, shortcuts are optionally synced across Apple devices using iCloud.
Shortcuts can also be shared with other users through iCloud. Shortcuts are stored locally
in an encrypted format.

Custom shortcuts are versatile—they’re similar to scripts or programs. When downloading
shortcuts from the internet, the user is warned that the shortcut hasn’t been reviewed by
Apple and is given the opportunity to inspect the shortcut. To protect against malicious
shortcuts, updated malware definitions are downloaded to identify malicious shortcuts at
runtime.

Custom shortcuts can also run user-specified JavaScript on websites in Safari when
invoked from the share sheet. To protect against malicious JavaScript that, for example,
tricks the user into running a script on a social media website that harvests their data,
the JavaScript is validated against the aforementioned malware definitions. The first time
a user runs JavaScript on a domain, the user is prompted to allow shortcuts containing
JavaScript to run on the current webpage for that domain.

135Apple Platform Security

Services security

Services security overview
Apple has built a robust set of services to help users get even more utility and productivity
out of their devices. These services provide powerful capabilities for cloud storage, sync,
password storage, authentication, payment, messaging, communications, and more, all
while protecting users’ privacy and the security of their data.

This chapter covers security technologies used in iCloud, Sign in with Apple, Apple Pay,
iMessage, Apple Messages for Business, FaceTime, Find My, and Continuity.

Note: Not all Apple services and content are available in all countries or regions.

Apple ID and Managed Apple ID

Apple ID security overview
An Apple ID is the account used to sign in to Apple services. It’s important for users to
keep their Apple IDs secure to help prevent unauthorized access to their accounts. To help
with this, Apple IDs require strong passwords that:

•	 Must be at least eight characters in length

•	 Must contain both letters and numbers

•	 Must not contain three or more consecutive identical characters

•	 Can’t be a commonly used password

Users are encouraged to exceed these guidelines by adding extra characters and
punctuation marks to make their passwords even stronger.

Apple also notifies users in email or push notifications or both when important changes are
made to their account—for example, if a password or billing information has been changed
or the Apple ID has been used to sign in on a new device. If anything looks unfamiliar,
users are instructed to change their Apple ID password immediately.

In addition, Apple employs a variety of policies and procedures designed to protect user
accounts. These include limiting the number of retries for sign-in and password reset
attempts, active fraud monitoring to help identify attacks as they occur, and regular policy
reviews that allow Apple to adapt to any new information that could affect user security.

Note: The Managed Apple ID password policy is set by an administrator in Apple School
Manager or Apple Business Manager.

136Apple Platform Security

Two-factor authentication
To help users further secure their accounts, by default Apple uses two-factor
authentication—an extra layer of security for Apple IDs. It’s designed to ensure that only
the account’s owner can access the account, even if someone else knows the password.
With two-factor authentication, a user’s account can be accessed on only trusted devices,
such as the user’s iPhone, iPad, or Mac, or on other devices after completing a verification
from one of these trusted devices or a trusted phone number. To sign in for the first time
on any new device, two pieces of information are required—the Apple ID password and a
six-digit verification code that’s displayed on the user’s trusted devices or sent to a trusted
phone number. By entering the code, the user confirms that they trust the new device and
that it’s safe to sign in. Because a password alone is no longer enough to access a user’s
account, two-factor authentication improves the security of the user’s Apple ID and all
the personal information they store with Apple. It’s integrated directly into iOS, iPadOS,
macOS, tvOS, watchOS, and the authentication systems used by Apple websites.

When a user signs in to an Apple website using a web browser, a second factor request is
sent to all trusted devices associated with the user’s iCloud account, requesting approval
of the web session. If the user is signing in to an Apple website from a browser on a trusted
device, they see the verification code displayed locally on the device they’re using. When
the user enters the code on that device, the web session is approved.

Password reset and account recovery
If an Apple ID account password is forgotten, a user can reset it on a trusted device. If a
trusted device isn’t available and the password is known, a user can use a trusted phone
number can be used to authenticate through SMS verification. In addition, to provide
immediate recovery for an Apple ID, a previously used passcode can be used to reset
in conjunction with SMS. If these options aren’t possible, the account recovery process
must be followed. For more information, see the Apple Support article How to use account
recovery when you can’t reset your Apple ID password.

https://support.apple.com/HT204921
https://support.apple.com/HT204921

137Apple Platform Security

Managed Apple ID security
Managed Apple IDs function much like an Apple ID but are owned and controlled by
enterprise or educational organizations. These organizations can reset passwords and turn
off communications such as FaceTime and iMessage, and set up role-based permissions
for employees, staff members, teachers, and students.

For Managed Apple IDs, some services are disabled (for example, App Store, HomeKit,
and Find My).

Access management for Managed Apple IDs
Organizations can use access management available in Apple Business Manager, Apple
School Manager, and Apple Business Essentials to define where Managed Apple IDs can be
used and what services are available to them.

With access management, you can define whether users can sign in with a
Managed Apple ID on any device, on managed devices only, or on managed and supervised
devices only. Also, administrators can configure whether users are allowed to sign in to
iCloud on the web. This allows organizations to use the management state of the device as
a factor to decide if access to organizational data should be granted.

Additionally, administrators can define what iCloud services are available to their users.
This includes defining access to Apple Developer Programs, and the AppleSeed for IT beta
program, and determining whether users are allowed to access the Apple Privacy portal at
privacy.apple.com.

Managed Apple IDs also support collaboration on documents using Keynote, Numbers,
Pages, Reminders, and Notes as well as communication using FaceTime and iMessage.
For those services, organizations can define whether users can collaborate with anyone
or just with accounts created within the same Apple School Manager, Apple Business
Manager, or Apple Business Essential organization.

If access management rules change, they are reflected on devices the user is signed in
to with their Managed Apple ID. If requirements for the management state of a device are
changed, a Managed Apple ID is automatically signed out of a device if the device state
doesn’t meet the new requirements.

Inspecting Managed Apple IDs
Managed Apple IDs created in Apple School Manager also support inspection, which
allows organizations to comply with legal and privacy regulations. A user with the role
of Administrator, Site Manager, People Manager, or Instructor can inspect specific
Managed Apple ID accounts.

Inspectors can monitor only accounts that are below them in the organization’s hierarchy.
For example, teachers can monitor students, managers can inspect teachers and students,
and administrators can inspect managers, teachers, and students.

When inspecting credentials are requested using Apple School Manager, a special
account is issued that has access to only the Managed Apple ID for which inspecting was
requested. The inspector can then read and modify the user’s content stored in iCloud
or in CloudKit-enabled apps. Every request for auditing access is logged in Apple School
Manager. The logs show who the inspector was, the Managed Apple ID the inspector
requested access to, the time of the request, and whether the inspection was performed.

138Apple Platform Security

iCloud

iCloud security overview
iCloud stores a user’s contacts, calendars, photos, documents, and more and keeps the
information up to date across all of their devices automatically. iCloud can also be used
by third-party apps to store and sync documents as well as key values for app data as
defined by the developer. Users set up iCloud by signing in with an Apple ID and choosing
which services they would like to use. Certain iCloud features, such a iCloud Drive, and
iCloud Backup can be disabled by IT administrators using mobile device management
(MDM) configuration profiles.

iCloud uses strong security methods and employs strict policies to protect user data.
Most iCloud data is first encrypted on the user’s device, using device-generated iCloud
keys, before being uploaded to iCloud servers. For data that isn’t end-to-end encrypted,
the user’s device securely uploads these iCloud keys to iCloud Hardware Security Modules
in Apple data centers. This allows Apple to help the user with data recovery, and decrypt
the data on the user’s behalf whenever they need it, (for example, when they sign in on a
new device, restore from a backup, or access their iCloud data on the web). Data moving
between the user’s devices and iCloud servers is separately encrypted in transit with TLS,
and iCloud servers store user data with an additional layer of encryption at rest.

Encryption keys, when available to Apple, are secured in Apple data centers. When
processing data stored in a third-party data center, these encryption keys are accessed
only by Apple software running on secure servers, and only while conducting the necessary
processing. For additional privacy and security, many Apple services use end-to-end
encryption, which means the user’s iCloud data can be accessed only by the users
themselves, and only from the trusted devices where they are signed in with their Apple ID.

Apple offers users two options to encrypt and protect the data they store in iCloud:

•	 Standard data protection (the default setting): The user’s iCloud data is encrypted,
the encryption keys are secured in Apple data centers, and Apple can assist with data
and account recovery. Only certain iCloud data—14 data categories, including Health
data and passwords in iCloud Keychain—is end-to-end encrypted.

•	 Advanced Data Protection for iCloud: An optional setting that offers Apple’s highest
level of cloud data security. If a user chooses to turn on Advanced Data Protection,
their trusted devices retain sole access to the encryption keys for the majority of
their iCloud data, thereby protecting it using end-to-end encryption. When users turn
on Advanced Data Protection, the number of data categories that use end-to-end
encryption rises to 23 and includes their iCloud Backup, Photos, Notes, and more.

 The specific categories of iCloud data protected with end-to-end encryption are listed in
the Apple Support article iCloud data security overview.

https://support.apple.com/102651

139Apple Platform Security

iCloud encryption
Data encryption in iCloud is closely tied to the data storage model, starting with the
CloudKit frameworks and APIs that allow apps and system software to store data in iCloud
on behalf of the user, and keep everything up-to-date across devices and on the web.

CloudKit encryption
CloudKit is a framework that lets app developers store key-value data, structured data,
and assets (large data stored separately from the database, such as images or videos)
in iCloud. CloudKit supports both public and private databases, grouped in containers.
Public databases are globally shared, typically used for generic assets, and aren’t
encrypted. Private databases store each user’s iCloud data.

CloudKit uses a hierarchy of keys that matches the structure of the data. Each container’s
private database is protected by a key hierarchy, rooted in an asymmetric key called a
CloudKit Service key. These keys are unique to each iCloud user and generated on their
trusted device. When data is written to CloudKit, all record keys are generated on the
user’s trusted device and wrapped to the appropriate key hierarchy before any data is
uploaded.

Many Apple services, listed in the Apple Support article iCloud data security overview,
use end-to-end encryption with a CloudKit service key that’s protected in the same way
as iCloud Keychain syncing. For these CloudKit containers, the service keys are available
only on the user’s trusted devices and can’t be accessed by Apple or any third party.
These keys are synchronized between a user’s devices even if the user chooses not to use
iCloud Keychain to sync their passwords, passkeys, and other user data. In the event of
device loss, users can recover their iCloud Keychain data through the use of Secure iCloud
Keychain recovery, Account Recovery Contacts, or an Account Recovery Key.

https://developer.apple.com/icloud/cloudkit/designing/
https://support.apple.com/102651

140Apple Platform Security

Encryption key management

The security of encrypted data in CloudKit relies on the security of the corresponding
encryption keys. CloudKit service keys are divided into two categories: end-to-end
encrypted and available-after-authentication.

•	 End-to-end encrypted service keys: For end-to-end encrypted iCloud services,
the relevant CloudKit service private keys are never made available to Apple servers.
Service key pairs, including the private keys, are created locally on a user’s trusted
device and transferred to the user’s other devices using iCloud Keychain security.
Although iCloud Keychain recovery and synchronization flows are mediated by Apple
servers, these servers are cryptographically prevented from accessing any of the
user’s keychain data. In the worst case of losing access to iCloud Keychain and all of its
recovery mechanisms, the end-to-end encrypted data in CloudKit is lost. Apple can’t
help recover this data.

•	 Available-after-authentication service keys: For other services, such as Photos and
iCloud Drive, the service keys are stored in iCloud Hardware Security Modules in Apple
data centers, and can be accessed by some Apple services. When a user signs in to
iCloud on a new device and authenticates their Apple ID, these keys can be accessed by
Apple servers without further user interaction or input. For example, after signing into
iCloud.com, the user can immediately view their photos online. These service keys are
available-after-authentication keys.

141Apple Platform Security

Advanced Data Protection for iCloud
Advanced Data Protection for iCloud is an optional setting that offers Apple’s highest
level of cloud data security. When a user turns on Advanced Data Protection, their trusted
devices retain sole access to the encryption keys for the majority of their iCloud data,
thereby protecting it with end-to-end encryption. For users who turn on Advanced Data
Protection, the total number of data categories protected using end-to-end encryption
rises from 14 to 23 and includes iCloud Backup, Photos, Notes, and more.

Note: This feature may not be available in all countries or regions.

Conceptually, Advanced Data Protection is simple: All CloudKit Service keys that were
generated on device and later uploaded to the available-after-authentication iCloud
Hardware Security Modules (HSMs) in Apple data centers are deleted from those HSMs
and instead kept entirely within the account’s iCloud Keychain protection domain. They are
handled like the existing end-to-end encrypted service keys, which means Apple can no
longer read or access these keys.

Advanced Data Protection also automatically protects CloudKit fields that third-party
developers choose to mark as encrypted, and all CloudKit assets.

Enabling Advanced Data Protection
When the user turns on Advanced Data Protection, their trusted device performs two
actions: First, it communicates the user’s intent to turn on Advanced Data Protection to
their other devices that participate in end-to-end-encryption. It does so by writing a new
value, signed by device-local keys, into its iCloud Keychain device metadata. Apple servers
can’t remove or modify this attestation while it gets synchronized with the user’s other
devices.

Second, the device initiates the removal of the available-after-authentication service keys
from Apple data centers. As these keys are protected by iCloud HSMs, this deletion is
immediate, permanent, and irrevocable. After the keys are deleted, Apple can no longer
access any of the data protected by the user’s service keys. At this time, the device begins
an asynchronous key rotation operation, which creates a new service key for each service
whose key was previously available to Apple servers. If the key rotation fails,
due to network interruption or any other error, the device retries the key rotation until it’s
successful.

After the service key rotation is successful, new data written to the service can’t be
decrypted with the old service key. It’s protected with the new key which is controlled
solely by the user’s trusted devices, and was never available to Apple.

142Apple Platform Security

Advanced Data Protection and iCloud.com web access
When a user first turns on Advanced Data Protection, web access to their data at iCloud.
com is automatically turned off. This is because iCloud web servers no longer have access
to the keys required to decrypt and display the user’s data. The user can choose to turn
on web access again, and use the participation of their trusted device to access their
encrypted iCloud data on the web.

After turning on web access, the user must authorize the web sign-in on one of their
trusted devices each time they visit iCloud.com. The authorization “arms” the device for
web access. For the next hour, this device accepts requests from specific Apple servers
to upload individual service keys, but only those corresponding to an allow list of services
normally accessible on iCloud.com. In other words, even after the user authorizes a web
sign-in, a server request is unable to induce the user’s device to upload service keys for
data that isn’t intended to be viewed on iCloud.com, (such as Health data or passwords
in iCloud Keychain). Apple servers request only the service keys needed to decrypt the
specific data that the user is requesting to access on the web. Every time a service key is
uploaded, it is encrypted using an ephemeral key bound to the web session that the user
authorized, and a notification is displayed on the user’s device, showing the iCloud service
whose data is temporarily being made available to Apple servers.

Preserving the user’s choices
The Advanced Data Protection and iCloud.com web access settings can be modified only
by the user. These values are stored in the user’s iCloud Keychain device metadata and can
only be changed from one of the user’s trusted devices. Apple servers can’t modify these
settings on behalf of the user, nor can they roll them back to a previous configuration.

Security implications of sharing and collaboration
In most cases, when users share content to collaborate with each other—for example, with
shared Notes, shared Reminders, shared folders in iCloud Drive, or iCloud Shared Photo
Library—and all the users have Advanced Data Protection turned on, Apple servers are
used only to establish sharing but don’t have access to the encryption keys for the shared
data. The content remains end-to-end encrypted and accessible only on participants’
trusted devices. For each sharing operation, a title and representative thumbnail may be
stored by Apple with standard data protection to show a preview to the receiving users.

Selecting the “anyone with a link” option when enabling collaboration will make the content
available to Apple servers under standard data protection, as the servers need to be able
to provide access to anyone who opens the URL.

iWork collaboration and the Shared Albums feature in Photos don’t support Advanced Data
Protection. When users collaborate on an iWork document, or open an iWork document
from a shared folder in iCloud Drive, the encryption keys for the document are securely
uploaded to iWork servers in Apple data centers. This is because real-time collaboration
in iWork requires server-side mediation to coordinate document changes between
participants. Photos added to Shared Albums are stored with standard data protection,
as the feature permits albums to be publicly shared on the web.

143Apple Platform Security

Disabling Advanced Data Protection
The user can turn off Advanced Data Protection at any time. If they decide to do so:

1. The user’s device first records their new choice in iCloud Keychain participation
metadata, and this setting is securely synchronized to all their devices.

2. The user’s device securely uploads the service keys for all available-after-authentication
services to the iCloud HSMs in Apple data centers. This never includes keys for services
that are end-to-end encrypted under standard data protection, such as iCloud Keychain
and Health.

The device uploads both the original service keys, generated before Advanced Data
Protection had been turned on, and the new service keys that were generated after
the user turned on the feature. This makes all data in these services accessible after
authentication and returns the account to standard data protection, where Apple can once
again help the user recover most of their data should they lose access to their account.

iCloud data not covered by Advanced Data Protection
Because of the need to interoperate with the global email, contacts, and calendar systems,
iCloud Mail, Contacts, and Calendar aren’t end-to-end encrypted.

iCloud stores some data without the protection of user-specific CloudKit service keys,
even when Advanced Data Protection is turned on. CloudKit Record fields must be
explicitly declared as “encrypted” in the container’s schema to be protected, and reading
and writing encrypted fields requires the use of dedicated APIs. Dates and times when a
file or object was modified are used to sort a user’s information, and checksums of file and
photo data are used to help Apple de-duplicate and optimize the user’s iCloud and device
storage—all without having access to the files and photos themselves. Details about how
encryption is used for specific data categories is available in the Apple Support article
iCloud data security overview.

Decisions such as the use of checksums for data de-duplication—a well-known technique
called convergent encryption—were part of the original design of iCloud services when
they launched. This metadata is always encrypted, but the encryption keys are stored by
Apple with standard data protection. To continue to strengthen security protections for all
users, Apple is committed to ensuring more data, including this kind of metadata, is end-
to-end encrypted when Advanced Data Protection is turned on.

https://developer.apple.com/documentation/cloudkit/ckrecord/3746821-encryptedvalues?language=objc
https://support.apple.com/102651

144Apple Platform Security

Advanced Data Protection requirements
The requirements to turn on Advanced Data Protection for iCloud include the following:

•	 The user’s account must support end-to-end encryption. End-to-end encryption
requires two-factor authentication for their Apple ID and a passcode or password set on
their trusted devices. For more information, see the Apple Support article Two-factor
authentication for Apple ID.

•	 Devices where the user is signed in with their Apple ID must be updated to iOS 16.2,
iPadOS 16.2, macOS 13.1, tvOS 16.2, watchOS 9.2, or later, and the latest version of
iCloud for Windows. This requirement prevents a previous version of iOS, iPadOS,
macOS, tvOS, or watchOS from mishandling the newly-created service keys by
re-uploading them to the available-after-authentication HSMs in a misguided attempt to
repair the account state.

•	 The user must set up at least one alternative recovery method—one or more recovery
contacts or a recovery key—which they can use to recover their iCloud data if they lose
access to their account.

If the recovery methods fail, such as if the recovery contact’s information is out of date,
or the user forgets them, Apple can’t help recover the user’s end-to-end encrypted
iCloud data.

Advanced Data Protection for iCloud can be turned on only for Apple IDs.
Managed Apple IDs and child accounts (varies by country or region) aren’t supported.

https://support.apple.com/102660
https://support.apple.com/102660

145Apple Platform Security

Security of iCloud Backup
iCloud backs up information—including device settings, app data, photos, and videos in
the Camera Roll, and conversations in the Messages app—daily over Wi-Fi. iCloud Backup
occurs only when the device is locked, connected to a power source, and has Wi-Fi access
to the internet. Mindful of the storage encryption used in iOS and iPadOS, iCloud Backup
is designed to keep data secure while allowing incremental, unattended backup and
restoration to occur. By default, the iCloud Backup service key is securely backed up to
iCloud Hardware Security Modules in Apple data centers, and is part of the available-after-
authentication data category. For users who turn on Advanced Data Protection for iCloud,
the iCloud Backup service key is protected with end-to-end encryption, and available only
to users on their trusted devices.

When files are created in Data Protection classes that aren’t accessible when the
device is locked, their per-file keys are encrypted, using the class keys from the
iCloud Backup keybag and backing the files up to iCloud in their original, encrypted state.
All files are encrypted during transport and, when stored, encrypted using account-based
keys, as described in CloudKit encryption.

The iCloud Backup keybag contains asymmetric (Curve25519) keys for Data Protection
classes that aren’t accessible when the device is locked. The backup set is stored in the
user’s iCloud account and consists of a copy of the user’s files and the iCloud Backup
keybag. The iCloud Backup keybag is protected by a random key, which is also stored with
the backup set. The user’s iCloud password isn’t used for encryption, so changing the
iCloud password won’t invalidate existing backups.

On restore, the backed-up files, iCloud Backup keybag, and the key for the keybag are
retrieved from the user’s iCloud account. The iCloud Backup keybag is decrypted using
its key, then the per-file keys in the keybag are used to decrypt the files in the backup set,
which are written as new files to the file system, thus reencrypting them according to their
Data Protection class.

The following content is backed up using iCloud Backup:

•	 Records for purchased music, movies, TV shows, apps, and books. A user’s
iCloud Backup includes information about purchased content present on the user’s
device, but not the purchased content itself. When the user restores from an
iCloud Backup, their purchased content is automatically downloaded from the iTunes
Store, the App Store, the Apple TV app, or Apple Books. Some types of content aren’t
downloaded automatically in all countries or regions, and previous purchases may be
unavailable if they have been refunded or are no longer available in their respective
store. Full purchase history is associated with a user’s Apple ID.

•	 Photos and videos on a user’s devices. Note that if a user turns on iCloud Photos in
iOS 8.1, iPadOS 13.1, or OS X 10.10.3, or later, their photos and videos are already stored
in iCloud, so they aren’t included in the user’s iCloud Backup.

•	 Contacts, calendar events, reminders, and notes

•	 Device settings

•	 App data

•	 Home Screen and app organization

•	 HomeKit configuration

•	 Medical ID data

146Apple Platform Security

•	 Voice Memos password (if necessary, requires the physical SIM card that was in use
during backup)

•	 Message, Apple Messages for Business, text (SMS), and MMS messages (if necessary,
requires the physical SIM card that was in use during backup)

iCloud Backup is also used to back up the local device keychain, encrypted with a key
derived from the Secure Enclave UID root cryptographic key of the device. This key is
unique to the device and not known to Apple. This allows the database to be restored only
to the same device from which it originated, and it means no one else, including Apple,
can read it. For more information, see Secure Enclave.

Messages in iCloud
Messages in iCloud keeps a user’s entire message history updated and available on all
devices.

With standard data protection, Messages in iCloud is end-to-end encrypted when
iCloud Backup is turned off. When iCloud Backup is turned on, the backup includes a
copy of the Messages in iCloud encryption key so Apple can help the user recover their
messages even if they have lost access to iCloud Keychain and their trusted devices.
If the user turns off iCloud Backup, a new key is generated on their device to protect future
Messages in iCloud. The new key is stored only in iCloud Keychain, only accessible to the
user on their trusted devices, and new data written to the container can’t be decrypted
with the old container key.

With Advanced Data Protection, Messages in iCloud is always end-to-end encrypted.
When iCloud Backup is turned on, everything inside it is end-to-end encrypted, including
the Messages in iCloud encryption key. The iCloud Backup service key, as well as the
Messages in iCloud container key are both rolled when the user turns on Advanced Data
Protection. For more information, see the Apple Support article iCloud data security
overview.

https://support.apple.com/102651
https://support.apple.com/102651

147Apple Platform Security

iCloud Private Relay security
iCloud Private Relay helps protect users primarily when browsing the web with Safari,
but it also includes all DNS name resolution requests. This helps ensure that no single
party, not even Apple, can correlate the user’s IP address and their browsing activity.
It does this by using different proxies, an ingress proxy, managed by Apple and an egress
proxy, managed by a content provider. To use iCloud Private Relay, the user must be
running iOS 15, iPadOS 15, or macOS 12.0.1, or later, and be signed in to their iCloud+
account with their Apple ID. iCloud Private Relay can then be turned on in Settings > iCloud
or System Settings > iCloud.

For more information, see iCloud Private Relay Overview.

https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF

148Apple Platform Security

Account recovery contact security
Users can add up to five people they trust as account recovery contacts to help them
recover their iCloud account and data, including all of their end-to-end encrypted data,
whether or not they have turned on Advanced Data Protection. Neither Apple nor the
recovery contact have the necessary information individually to recover the user’s end-to-
end encrypted iCloud data.

Recovery Contact is designed with user privacy in mind. A user’s chosen recovery contacts
aren’t known to Apple. Apple servers only learn information about a recovery contact
late in the course of a recovery attempt after the user asks the contact for help and their
contact begins actually assisting with the recovery. That information isn’t retained after the
recovery completes.

Recovery contact security process
When a user sets up an Account Recovery Contact, a key associated with that contact
is generated. This key protects access to the user's iCloud data—including end-to-end
encrypted CloudKit Data. Next, a random 256-bit AES key is generated, and used to
encrypt the Recovery Contact key to create a Recovery Contact Packet. The encrypted
Packet is sent to the Recovery Contact for safekeeping, and the random AES key is
stored with Apple. Neither the AES key nor the packet provides any information about the
underlying key by itself. At recovery time, after the user’s device successfully obtains both
the Recovery Contact Packet from their Recovery Contact and the AES key from Apple,
it can combine the two to recover the original key and access the user’s iCloud data.

To set up an Account Recovery Contact, the user’s device communicates with Apple
servers to upload the share of the keying information Apple will hold (the AES key
mentioned above). It then establishes an end-to-end encrypted CloudKit container with
the recovery contact to share the portion the recovery contact needs (the Recovery
Contact Packet encrypted using the AES key). An authorization secret, created by Apple,
is also shared with the recovery contact. This will be used to recover the account and
help reset the password on the account. The communication to invite and accept recovery
contacts takes places through a mutually authenticated IDS channel. The recovery contact
automatically stores the received information in their iCloud Keychain. Apple can’t access
the contents of the CloudKit container, nor the iCloud Keychain that stores this information.
When the sharing is performed, Apple servers view only an anonymous ID for the recovery
contact.

Later, when a user needs to recover their account and iCloud data, they can request help
from their recovery contact. At that time a recovery code is generated by the recovery
contact’s device, which the recovery contact then provides to the user out of band
(for example in person or over a phone call). The user then enters the recovery code on
their device to establish a secure connection between devices using the SPAKE2+ protocol,
the contents of which isn’t accessible by Apple. This interaction is orchestrated by Apple
servers, but Apple can’t initiate the recovery process.

After the secure connection is established and all required security checks are completed,
the recovery contact’s device returns their portion of the keying information and the
previously established authorization secret back to the user requesting recovery.
The user presents this authorization secret to an Apple server, which grants access to the
keying information Apple is keeping. Providing the authorization secret also authorizes the
account password reset to restore account access.

149Apple Platform Security

Finally, the user’s device recombines the keying information received from Apple and the
Account Recovery Contact, and then uses it to decrypt and recover their iCloud data.

There are safeguards in place to prevent a recovery contact from initiating recovery
without the user’s consent, which include a liveness check on the user’s account. If the
account is in active use, recovery using a Recovery Contact also requires knowledge of a
recent device passcode or the iCloud Security Code.

Legacy Contact security
If a user wants their data to be accessible to designated beneficiaries after their death,
they can set up Legacy Contacts on their account. A Legacy Contact is established much
like a Recovery Contact, except that the keying information used by a beneficiary doesn’t
encompass the information necessary to decrypt the decedent’s iCloud Keychain.
The key structure used is the same as for account recovery contact, except that in
this case Apple stores the encrypted packet, and the beneficiary keeps the AES key.
This allows the portion the beneficiary receives to be shorter—and thus easier to print
out if necessary—while still providing the same property that neither part provides any
information about the underlying key by itself.

The keying information a beneficiary receives is referred to as an access key in user-facing
documentation. The access key is saved automatically on supported devices, but it can
also be printed and stored offline for use. For more information, see the Apple support
article How to add a Legacy Contact for your Apple ID.

After the user’s death, Legacy Contacts sign in to the Apple claim website to initiate
access. This requires a death certificate and is authorized in part with the authorization
secret mentioned in the previous section. After all the security checks are completed,
Apple issues a user name and password for the new account and releases the necessary
keying information to the Legacy Contact.

To more easily input the access key when needed, it’s presented as an alphanumeric code
with an associated QR code. After it’s entered, access to the decedent’s iCloud data is
restored. This can be performed on a device, or access can be established online. For more
information, see the Apple Support article Request access to an Apple account as a Legacy
Contact.

https://support.apple.com/102631
https://support.apple.com/102678
https://support.apple.com/102678

150Apple Platform Security

Passcode and password management

Password security overview
iOS, iPadOS, and macOS make it easy for users to authenticate to third-party apps and
websites that use passwords. The best way to manage passwords is not to have to use
one. Sign in with Apple lets users sign in to third-party apps and websites without having
to create and manage an additional account or password while protecting the sign-in with
their two-factor authentication for Apple ID. For sites that don’t support Sign in with Apple,
the Automatic Strong Password feature enable a user’s devices to automatically create,
sync, and enter unique strong passwords for sites and apps. In iOS and iPadOS, passwords
are saved to a special Password AutoFill keychain that’s user controlled and manageable by
going to Settings > Passwords.

In macOS, saved passwords can be managed in Safari Passwords preferences. This sync
system can also be used to sync passwords that are manually created by the user.

Sign in with Apple security
Sign in with Apple is a privacy-friendly alternative to other single sign-on systems.
It provides the convenience and efficiency of one-tap sign-in while giving the user more
transparency and control over their personal information.

Sign in with Apple allows users to set up an account and sign in to apps and websites
using the Apple ID they already have, and it gives them more control over their personal
information. Apps can only ask for the user’s name and email address when setting up an
account, and the user always has a choice: They can share their personal email address
with an app or choose to keep their personal email private and use the new Apple private
email relay service instead. This email relay service shares a unique, anonymized email
address that forwards to the user’s personal address so they can still receive useful
communication from the developer while maintaining a degree of privacy and control over
their personal information.

Sign in with Apple is built for security. Every Sign in with Apple user is required to have
two-factor authentication enabled for their Apple ID. Two-factor authentication helps
secure not only the user’s Apple ID but also the accounts they establish with their apps.
Furthermore, Apple has developed and integrated a privacy-friendly antifraud signal into
Sign in with Apple. This signal gives developers confidence that the new users they acquire
are real people and not bots or scripted accounts.

151Apple Platform Security

Automatic strong passwords
When iCloud Keychain is enabled, iOS, iPadOS, and macOS create strong, random, unique
passwords when users sign up for or change their password on a website in Safari. In iOS
and iPadOS, automatic strong password generation is also available in apps. Users must
opt out of using strong passwords. Generated passwords are saved in the keychain and
kept up to date across devices with iCloud Keychain, when it’s enabled.

By default, passwords generated by iOS and iPadOS are 20 characters long. They contain
one digit, one uppercase character, two hyphens, and 16 lowercase characters. These
generated passwords are strong, containing 71 bits of entropy.

Passwords are generated based on heuristics that determine whether a password-field
experience is for password creation. If the heuristic fails to recognize a context-specific
password being used at password creation, app developers can set UITextContentType.
newPassword on their text field and web developers can set autocomplete= “new-
password” on their <input> elements.

To help ensure that generated passwords are compatible with the relevant services,
apps and websites can provide rules. Developers provide these rules using
UITextInputPasswordRules or the passwordrules attribute on their input elements.
Devices then generate the strongest password they can that fulfills these rules.

152Apple Platform Security

Password AutoFill security
Password AutoFill automatically fills credentials stored in the keychain.
The iCloud Keychain password manager and Password AutoFill provide the following
features:

•	 Filling in credentials in apps and websites

•	 Generating strong passwords

•	 Saving passwords in both apps and websites in Safari

•	 Sharing passwords securely to a users’ contacts

•	 Providing passwords to a nearby Apple TV that’s requesting credentials

Generating and saving passwords within apps, as well as providing passwords to Apple TV,
are available only in iOS and iPadOS.

Password AutoFill in apps
iOS and iPadOS allow users to input saved user names and passwords into credential-
related fields in apps, similar to the way Password AutoFill works in Safari. In iOS and
iPadOS, users tap a key affordance in the software keyboard’s QuickType bar. In macOS,
for apps built with Mac Catalyst, a Passwords drop-down menu appears below credential-
related fields.

When an app is strongly associated with a website that uses the same app-website
association mechanism and that’s powered by the same apple-app-site-association
file, the iOS and iPadOS QuickType bar and macOS drop-down menu directly suggest
credentials for the app, if any are saved to the Password AutoFill Keychain. This allows
users to choose to disclose Safari-saved credentials to apps with the same security
properties, without those apps having to adopt an API.

Password AutoFill exposes no credential information to an app until a user consents to
release a credential to the app. The credential lists are drawn from or presented out of the
app’s process.

When an app and website have a trusted relationship and a user submits credentials within
an app, iOS and iPadOS may prompt the user to save those credentials to the Password
AutoFill keychain for later use.

153Apple Platform Security

App access to saved passwords
iOS, iPadOS, and macOS apps can request the Password AutoFill keychain’s
help with signing a user in using ASAuthorizationPasswordProvider and
SecAddSharedWebCredential. The password provider and its request can be used in
conjunction with Sign in with Apple, so that the same API is called to help users sign into
an app, regardless of whether the user’s account is password based or was created using
Sign in with Apple.

Apps can access saved passwords only if the app developer and website administrator
have given their approval and the user has given consent. App developers express their
intent to access Safari saved passwords by including an entitlement in their app.
The entitlement lists the fully qualified domain names of associated websites, and the
websites must place a file on their server listing the unique app identifiers of apps
approved by Apple.

When an app with the com.apple.developer.associated-domains entitlement is installed,
iOS and iPadOS make a TLS request to each listed website, requesting one of the following
files:

•	 apple-app-site-association

•	 .well-known/apple-app-site-association

If the file lists the app identifier of the app being installed, then iOS and iPadOS mark the
website and app as having a trusted relationship. Only with a trusted relationship will calls
to these two APIs result in a prompt to the user, who must agree before any passwords are
released to the app, updated, or deleted.

154Apple Platform Security

Password security recommendations
The Password AutoFill passwords list in iOS, iPadOS, and macOS indicates which of a
user’s saved passwords will be reused with other websites, passwords that are considered
weak, and passwords that have been compromised by a data leak.

Overview
Using the same password for more than one service may leave those accounts vulnerable
to a credential-stuffing attack. If a service is breached and passwords are leaked, attackers
may try the same credentials on other services to compromise additional accounts.

•	 Passwords are marked reused if the same password is seen used for more than one
saved password across different domains.

•	 Passwords are marked weak if they may be easily guessed by an attacker. iOS, iPadOS,
and macOS detect common patterns used to create memorable passwords, such as
using words found in a dictionary, common character substitutions (such as using
“p4ssw0rd” instead of “password”), patterns found on a keyboard (such as “q12we34r”
from a QWERTY keyboard), or repeated sequences (such as “123123”). These patterns
are often used to create passwords that satisfy minimum password requirements for
services, but are also commonly used by attackers attempting to obtain a password
using brute force.

Because many services specifically require a four- or six-digit PIN code, these short
passcodes are evaluated with different rules. PIN codes are considered weak if they are
one of the most common PIN codes, if they are an increasing or decreasing sequence
such as “1234” or “8765,” or if they follow a repetition pattern, such as “123123” or
“123321.”

•	 Passwords are marked leaked if the Password Monitoring feature can claim they have
been present in a data leak. For more information, see Password Monitoring.

Weak, reused, and leaked passwords are either indicated in the list of passwords (macOS)
or present in the dedicated Security Recommendations interface (iOS and iPadOS). If the
user logs in to a website in Safari using a previously saved password that’s very weak or
that’s been compromised by a data leak, they’re shown an alert strongly encouraging them
to upgrade to an automatic strong password.

155Apple Platform Security

Upgrading account authentication security in iOS and iPadOS
Apps that implement an Account Authentication Modification Extension (in the
Authentication Services framework) can provide easy, tap-of-a-button upgrades for
password-based accounts—namely, they can switch to using Sign in with Apple or an
automatic strong password. This extension point is available in iOS and iPadOS.

If an app has implemented the extension point and is installed on device, users see
extension upgrade options when viewing Security Recommendations for credentials
associated with the app in the iCloud Keychain password manager in Settings.
The upgrades are also offered when users sign in to the app with the at-risk credential.
Apps have the ability to tell the system not to prompt users with upgrade options after
signing in. Using new AuthenticationServices API, apps can also invoke their extensions
and perform upgrades themselves, ideally from an account settings or account
management screen in the app.

Apps can choose to support strong password upgrades, Sign in with Apple upgrades, or
both. In a strong password upgrade, the system generates an automatic strong password
for the user. If necessary, the app can provide custom password rules to follow when
generating the new password. When a user switches an account from using a password to
using Sign in with Apple, the system provides a new Sign in with Apple credential to the
extension to associate the account with. The user’s Apple ID email isn’t provided as part
of the credential. After a successful Sign in with Apple upgrade, the system deletes the
previously used password credential from the user’s keychain if it’s saved there.

Account Authentication Modification Extensions have the opportunity to perform additional
user authentication before performing an upgrade. For upgrades initiated within the
password manager or after signing in to an app, the extension provides the user name and
password for the account to upgrade. For in-app upgrades, only the user name is provided.
If the extension requires further user authentication, it can request to show a custom user
interface before moving on with the upgrade. The intended use case for showing this
user interface is to have the user enter a second factor of authentication to authorize the
upgrade.

156Apple Platform Security

Password Monitoring
Password Monitoring is a feature that matches passwords stored in the user’s Password
AutoFill keychain against a continuously updated and curated list of passwords known to
have been exposed in leaks from different online organizations. If the feature is turned
on, the monitoring protocol continuously matches the user’s Password AutoFill keychain
passwords against the curated list.

How monitoring works
The user’s device continuously performs round-robin checks on a user’s passwords,
querying an interval that’s independent of the user’s passwords or their password manager
usage patterns. This helps ensure that verification states remain up to date with the
current curated list of leaked passwords. To help prevent leakage of information related to
how many unique passwords a user has, requests are batched and performed in parallel.
A fixed number of passwords are verified in parallel on each check, and if a user has fewer
than this number, random passwords are generated and added to the queries to make up
the difference.

How passwords are matched
Passwords are matched in a two-part process. The most commonly leaked passwords are
contained within a local list on the user’s device. If the user’s password occurs on this list,
the user is immediately notified without any external interaction. This is designed to ensure
that no information is leaked about the passwords a user has that are most at risk due to a
password breach.

If the password isn’t contained on the most frequent list, it’s matched against less
frequently leaked passwords.

Comparing users’ passwords against a curated list
To verify whether a password not present in the local list is a match involves some
interaction with Apple servers. To help ensure that legitimate users’ passwords aren’t sent
to Apple, a form of cryptographic private set intersection is deployed that compares the
users’ passwords against a large set of leaked passwords. This is designed to ensure that
for passwords less at risk of breach, little information is shared with Apple. For a user’s
password, this information is limited to a 15-bit prefix of a cryptographic hash. The removal
of the most frequently leaked passwords from this interactive process, using the local list
of most commonly leaked passwords, reduces the delta in relative frequency of passwords
in the web services buckets, making it impractical to infer user passwords from these
lookups.

The underlying protocol partitions the list of curated passwords, which contained
approximately 1.5 billion passwords at the time of this writing, into 215 different buckets.
The bucket a password belongs to is based on the first 15 bits of the SHA256 hash value of
the password. Additionally, each leaked password, pw, is associated with an elliptic curve
point on the NIST P256 curve: Ppw = ⍺·HSWU(pw), where ⍺ is a secret random key known
only to Apple and HSWU is a random oracle function that maps passwords to curve points
based on the Shallue-van de Woestijne-Ulas method. This transformation is designed to
computationally hide the values of passwords and helps prevent revealing newly leaked
passwords through Password Monitoring.

157Apple Platform Security

To compute the private set intersection, the user’s device determines the bucket the user’s
password belongs to using λ, the 15-bit prefix of SHA256(upw), where upw is one of the
user’s passwords. The device generates their own random constant, β, and sends the point
Pc = β·HSWU(upw) to the server, along with a request for the bucket corresponding to λ.
Here β hides information about the user’s password and limits to λ the information exposed
from the password to Apple. Finally, the server takes the point sent by the user’s device,
computes ⍺Pc = ⍺β·HSWU(upw), and returns it, along with the appropriate bucket of points—
Bλ = { Ppw | SHA256(pw) begins with prefix λ}—to the device.

The returned information allows the device to compute B’λ = {β·Ppw | Ppw ∈ Bλ}, and
ascertains that the user’s password has been leaked if ⍺Pc ∈ B'λ.

Sending passwords to other users or Apple devices
Apple sends passwords securely to other users or Apple devices with AirDrop and on
Apple TV.

Saving credentials to another device with AirDrop
When iCloud is enabled, users can use AirDrop to send a saved credential to another
device. The credential includes the user’s name and password and the websites it’s saved
for. Sending credentials with AirDrop always operates in Contacts Only mode, regardless of
the user’s settings. On the receiving device, after user consent, the credentials are stored
in the user’s Password AutoFill Keychain.

Filling in credentials in apps on Apple TV
Password AutoFill is available to fill credentials in apps on Apple TV. When the user focuses
on a user name or password text field in tvOS, Apple TV begins advertising a request for
Password AutoFill over Bluetooth Low Energy (BLE).

Any nearby iPhone or iPad displays a prompt inviting the user to share a credential with
Apple TV. Here’s how the encryption method is established:

•	 If the device and Apple TV uses the same iCloud account, encryption between the
devices happens automatically.

•	 If the device is signed in to an iCloud account other than the one used by Apple TV,
the user is prompted to establish an encrypted connection through use of a PIN code.
To receive this prompt, iPhone must be unlocked and in close proximity to the Siri
Remote paired to that Apple TV.

After the encrypted connection is made using BLE link encryption, the credential is sent to
Apple TV and is automatically filled in to the relevant text fields on the app.

158Apple Platform Security

Credential provider extensions
In iOS, iPadOS, and macOS, users can designate a participating third-party app as a
credential provider for Password AutoFill in Passwords settings (iOS and iPadOS) or
in Extensions settings in System Settings (macOS 13 or later) or System Preferences
(macOS 12 or earlier). This mechanism is built on app extensions. The credential provider
extension must provide a view for choosing credentials. The extension can optionally
provide metadata about saved credentials so they can be offered directly on the QuickType
bar (iOS and iPadOS) or in an autocomplete suggestion (macOS). The metadata includes
the website of the credential and the associated user name, but not its password. iOS,
iPadOS, and macOS communicate with the extension to get the password when the user
chooses to fill a credential into an app or a website in Safari. Credential metadata is stored
inside the credential provider app’s container and is automatically removed when an app is
uninstalled.

iCloud Keychain

iCloud Keychain security overview

iCloud Keychain allows users to securely sync their passwords and passkeys between
iPhone and iPad devices and Mac computers without exposing them to Apple. In addition to
strong privacy and security, other goals for the design and architecture of iCloud Keychain
were ease of use, and the ability to recover keychain contents even all of a user’s devices
are inaccessible. iCloud Keychain consists of two services: keychain syncing and keychain
recovery.

iCloud Keychain and keychain recovery are designed such that a user’s passwords and
passkeys are still protected under the following conditions:

•	 A user’s iCloud account is compromised.

•	 iCloud is compromised by an external attacker or employee.

•	 A third party accesses user accounts.

Password manager integration with iCloud Keychain
iOS, iPadOS, and macOS can automatically generate cryptographically strong random
strings to use as account passwords in Safari. iOS and iPadOS can also generate strong
passwords for apps. Generated passwords are stored in the keychain and synced to other
devices. Keychain items are transferred from device to device, traveling through Apple
servers, but are encrypted end-to-end so that Apple and other devices can’t read their
contents.

159Apple Platform Security

Secure keychain syncing

When a user turns on iCloud Keychain for the first time on a two-factor authentication
account, the device establishes and creates a syncing identity for itself. The syncing
identity consists of asymmetric elliptical keys (using P-384), which are stored in the
device’s keychain. Each device maintains its own list of syncing identities of the user’s
other devices, and signs this list using one of its identity keys. These lists are stored in
CloudKit, allowing the user’s devices to reach consensus on how to securely sync keychain
data between themselves.

For compatibility with older iCloud devices, a similar syncing circle of trust is created
and another syncing identity is formed. The public key of the syncing identity is put in
the circle, and the circle is signed twice: first by the private key of the syncing identity,
and then again with an asymmetric elliptical key (using P-256) derived from the user’s
iCloud account password. Also stored with the circle are the parameters (random salt and
iterations) used to create the key that’s based on the user’s iCloud password.

iCloud storage of the syncing circle
For two-factor authentication accounts, each device’s list of trusted devices is stored in
CloudKit. The lists can’t be read without knowing the user’s iCloud password, and they
can’t be modified without having the private keys of the owning device.

Similarly, the signed syncing circle is stored in the user’s iCloud key-value storage area,
can’t be read without knowing the user’s iCloud password, and is unable to be validly
modified without having the private key of the syncing identity of its member.

How a user’s other devices are added to the syncing circle
New devices, as they sign into iCloud, join the iCloud Keychain syncing circle in one of two
ways: either by pairing with and being sponsored by an existing iCloud Keychain device,
or by using iCloud Keychain recovery.

During the pairing flows, the applicant device creates new syncing identities for both the
syncing circle and the syncing lists (for two-factor authentication accounts) and presents
them to the sponsor. The sponsor adds the public key of the new member to the syncing
circle and signs it again with both its syncing identity and the key derived from the user’s
iCloud password. The new syncing circle is placed in iCloud, where it’s similarly signed by
the new member of the circle. In two-factor authentication accounts, the sponsor device
also provides the joining device with a voucher signed by its identity keys, showing that
the applicant device should be trusted. It then updates its individual list of trusted syncing
identities to include the applicant.

There are now two members of the signing circle, and each member has the public key
of its peer. They now begin to exchange individual keychain items through CloudKit, or
iCloud key-value storage, whichever is most appropriate for the situation. If both circle
members have updates to the same item, one or the other is chosen, resulting in eventual
consistency. Each item that’s synced is encrypted so that it can be decrypted only by a
device within the user’s circle of trust; it can’t be decrypted by any other devices or by
Apple.

As new devices join the syncing circle, this “join process” is repeated. For example,
when a third device joins, it can be paired with either of the existing devices. As new peers
are added, each peer syncs with the new one. This is designed to ensure that all members
have the same keychain items.

160Apple Platform Security

Only certain items are synced
Some keychain items are device specific, such as iMessage keys, and so must stay on the
device. To prevent unexpected data transport, every item that will sync must be explicitly
marked with the kSecAttrSynchronizable attribute.

Apple sets this attribute for Safari user data (including user names, passwords,
and credit card numbers) as well as for Wi-Fi passwords, HomeKit encryption keys,
and other keychain items supporting end-to-end iCloud encryption.

Additionally, by default, keychain items added by third-party apps don’t sync.
Developers must set the kSecAttrSynchronizable attribute when adding items to the
keychain.

Secure iCloud Keychain recovery

iCloud Keychain escrows users’ keychain data with Apple without allowing Apple to
read the passwords and other data it contains. Even if the user has only a single device,
keychain recovery provides a safety net against data loss. This is particularly important
when Safari is used to generate random, strong passwords or passkeys for web accounts,
because the only record of those passwords is in the keychain.

A cornerstone of keychain recovery is secondary authentication and a secure escrow
service, created by Apple specifically to support this feature. The user’s keychain is
encrypted using a strong passcode, and the escrow service provides a copy of the
keychain only if a strict set of conditions are met.

Use of secondary authentication
There are several ways to establish a strong passcode:

•	 If two-factor authentication is enabled for the user’s account, the device passcode is
used to recover an escrowed keychain.

•	 If two-factor authentication isn’t set up, the user is asked to create an iCloud security
code by providing a six-digit passcode. Alternatively, without two-factor authentication,
users can specify their own, longer code, or they can let their devices create a
cryptographically random code that they can record and keep on their own.

Keychain escrow process
After the passcode is established, the keychain is escrowed with Apple. The iOS, iPadOS,
or macOS device first exports a copy of the user’s keychain and then encrypts it wrapped
with keys in an asymmetric keybag and places it in the user’s iCloud key-value storage
area. The keybag is wrapped with the user’s iCloud security code and with the public key
of the hardware security module (HSM) cluster that stores the escrow record.
This becomes the user’s iCloud escrow record. For two-factor authentication accounts,
the keychain is also stored in CloudKit and wrapped to intermediate keys that are
recoverable only with the contents of the iCloud escrow record, thereby providing the same
level of protection.

The contents of the escrow record also allow the recovering device to rejoin
iCloud Keychain, proving to any existing devices that the recovering device successfully
performed the escrow process and thus is authorized by the account’s owner.

161Apple Platform Security

Note: Besides establishing a security code, users must register a phone number for their
iCloud account. This provides a secondary level of authentication during keychain recovery.
The user receives an SMS message that must be replied to for the recovery to proceed.

Escrow security for iCloud Keychain

iCloud provides a secure infrastructure for keychain escrow to help ensure that only
authorized users and devices can perform a recovery. Topographically positioned behind
iCloud are clusters of hardware security modules (HSMs) that guard the escrow records.
As described previously, each has a key that is used to encrypt the escrow records under
their watch.

To recover a keychain, users must authenticate with their iCloud account and password and
respond to an SMS sent to their registered phone number. After this is done, users must
enter their iCloud security code. The HSM cluster verifies that a user knows their iCloud
security code using the Secure Remote Password (SRP) protocol; the code itself isn’t sent
to Apple. Each member of the cluster independently verifies that the user hasn’t exceeded
the maximum number of attempts allowed to retrieve their record, as discussed below. If a
majority agree, the cluster unwraps the escrow record and sends it to the user’s device.

Next, the device uses the escrowed data to unwrap the random keys used to encrypt the
user’s keychain. With that key, the keychain—retrieved from CloudKit and iCloud key-value
storage—is decrypted and restored onto the device. The escrow service allows only
10 attempts to authenticate and retrieve an escrow record. After several failed attempts,
the record is locked and the user must call Apple Support to be granted more attempts.
After the 10th failed attempt, the HSM cluster destroys the escrow record and the keychain
is lost forever. This provides protection against a brute-force attempt to retrieve the
record, at the expense of sacrificing the keychain data in response.

These policies are coded in the HSM firmware. The administrative access cards that permit
the firmware to be changed have been destroyed. Any attempt to alter the firmware or
access the private key causes the HSM cluster to delete the private key. Should this occur,
the owner of each keychain protected by the cluster receives a message informing them
that their escrow record has been lost. They can then choose to reenroll.

162Apple Platform Security

Apple Pay

Apple Pay security overview
With Apple Pay, users can use supported iPhone, iPad, Mac, and Apple Watch devices to
pay in an easy, secure, and private way in stores, apps, and on the web in Safari. Users can
also add Apple Pay–enabled transit, student ID, and access cards to Apple Wallet.
It’s simple for users, and it’s built with integrated security in both hardware and software.

Apple Pay is also designed to protect the user’s personal information. Apple Pay doesn’t
collect any transaction information that can be tied back to the user. Payment transactions
are between the user, the merchant, and the card issuer.

Apple Pay component security
Apple Pay uses several hardware and software features to provide secure, reliable
purchases.

Secure Element
The Secure Element is an industry-standard, certified chip running the Java Card platform,
which is compliant with financial industry requirements for electronic payments.
The Secure Element IC and the Java Card platform are certified in accordance with the
EMVCo Security Evaluation process. After the successful completion of the security
evaluation, EMVCo issues unique IC and platform certificates.

The Secure Element IC has been certified based on the Common Criteria standard.

NFC controller
The NFC controller handles near field communication protocols and routes communication
between the Application Processor and the Secure Element, and between the Secure
Element and the point-of-sale terminal.

Apple Wallet
The Apple Wallet app is used to add and manage credit, debit, and store cards and to make
payments with Apple Pay. Users can view their cards and may be able to view additional
information provided by their card issuer, such as their card issuer’s privacy policy,
recent transactions, and more in Apple Wallet. Users can also add cards to Apple Pay in:

•	 Setup Assistant and Settings for iOS and iPadOS

•	 The Watch app for Apple Watch

•	 Wallet & Apple Pay in System Settings (macOS 13 or later) or System Preferences
(macOS 12 or earlier) for Mac computers with Touch ID

In addition, Apple Wallet allows users to add and manage transit cards, rewards cards,
boarding passes, tickets, gift cards, student ID cards, access cards, and more.

163Apple Platform Security

Secure Enclave
On iPhone, iPad, Apple Watch, Mac computers with Touch ID, and Mac computers with
Apple silicon that use the Magic Keyboard with Touch ID, the Secure Enclave manages the
authentication process and allows a payment transaction to proceed.

On Apple Watch, the device must be unlocked, and the user must double-click the side
button. The double-click is detected and passed directly to the Secure Element or Secure
Enclave, where available, without going through the Application Processor.

Apple Pay servers
The Apple Pay servers manage the setup and provisioning of credit, debit, transit, student
ID, and access cards in Apple Wallet. The servers also manage the Device Account
Numbers stored in the Secure Element. They communicate both with the device and with
the payment network or card issuer servers. The Apple Pay servers are also responsible for
reencrypting payment credentials for payments within apps or on the web.

164Apple Platform Security

How Apple Pay keeps users’ purchases protected

Secure Element
The Secure Element hosts a specially designed applet to manage Apple Pay. It also
includes applets certified by payment networks or card issuers. Credit, debit, or prepaid
card data is sent from the payment network or card issuer encrypted to these applets using
keys that are known only to the payment network or card issuer and the applets’ security
domain. This data is stored within these applets and protected using the Secure Element’s
security features. During a transaction, the terminal communicates directly with the
Secure Element through the near-field-communication (NFC) controller over a dedicated
hardware bus.

NFC controller
As the gateway to the Secure Element, the NFC controller helps ensure that all contactless
payment transactions are conducted using a point-of-sale terminal that’s in close proximity
to the device. Only payment requests arriving from an in-field terminal are marked by the
NFC controller as contactless transactions.

After a credit, debit, or prepaid card (including store cards) payment is authorized by
the cardholder using Face ID, Touch ID, or a passcode, or on an unlocked Apple Watch
by double-clicking the side button, contactless responses prepared by the payment
applets within the Secure Element are exclusively routed by the controller to the NFC
field. Consequently, payment authorization details for contactless payment transactions
are contained to the local NFC field and are never exposed to the Application Processor.
In contrast, payment authorization details for payments within apps and on the web are
routed to the Application Processor, but only after encryption by the Secure Element to the
Apple Pay server.

165Apple Platform Security

Credit, debit, and prepaid cards

Card provisioning security overview

When a user adds a credit, debit, or prepaid card (including store cards) to Apple Wallet,
Apple securely sends the card information, along with other information about user’s
account and device, to the card issuer or card issuer’s authorized service provider
(usually the payment network). Using this information, the card issuer (or its service
provider) determines whether to approve adding the card to Apple Wallet. As part of the
card provisioning process, Apple Pay uses three server-side calls to send and receive
communication with the card issuer or payment network:

•	 Required Fields

•	 Check Card

•	 Link and Provision

The card issuer or payment network uses these calls to enable the card issuer to verify,
approve, and add cards to Apple Wallet. These client-server sessions use TLS 1.2 to
transfer the data.

Full card numbers aren’t stored on the device or on Apple Pay servers. Instead, a unique
Device Account Number is created, encrypted, and then stored in the Secure Element.
This unique Device Account Number is encrypted in such a way that Apple can’t access
it. The Device Account Number is unique and different from most credit or debit card
numbers; the card issuer or payment network can prevent its use on a magnetic stripe
card, over the phone, or on websites. The Device Account Number in the Secure Element
is never stored on Apple Pay servers or backed up to iCloud, and it is isolated from iOS,
iPadOS, and watchOS devices and from Mac computers with Touch ID and Mac computers
with Apple silicon that use the Magic Keyboard with Touch ID.

Cards for use with Apple Watch are provisioned for Apple Pay using the Apple Watch app
on iPhone, or within a card issuer’s iPhone app. Adding a card to Apple Watch requires that
the watch be within Bluetooth communications range. Cards are specifically enrolled for
use with Apple Watch and have their own Device Account Numbers, which are stored within
the Secure Element on the Apple Watch.

When credit, debit, or prepaid cards (including store cards) are added, they appear in a list
of cards during Setup Assistant on devices that are signed in to the same iCloud account.
These cards remain in this list for as long as they are active on at least one device.
Cards are removed from this list after they have been removed from all devices for 7 days.
This feature requires two-factor authentication to be enabled on the respective iCloud
account.

Adding credit or debit cards to Apple Pay

Credit cards can be manually added to Apple Pay in Apple devices.

166Apple Platform Security

Adding credit or debit cards manually
To add a card manually, the name, card number, expiration date, and CVV are used to
facilitate the provisioning process. From within Settings, Apple Wallet, or the Apple Watch
app, users can enter that information either by capturing it using the device’s camera.
When the camera captures the card information, Apple attempts to populate the name,
card number, and expiration date. The photo is never saved to the device or stored in the
photo library. After all the fields are filled in, the Check Card process verifies the fields
other than the CVV. They are then encrypted and sent to the Apple Pay server.

If a terms and conditions ID is returned with the Check Card process, Apple downloads and
displays the terms and conditions of the card issuer to the user. If the user accepts the
issuer’s terms and conditions, Apple sends the ID of the terms that were accepted as well
as the CVV to the Link and Provision process. Additionally, as part of the Link and Provision
process, Apple shares information from the device with the card issuer or network.
This includes information about (a) the user’s iTunes and App Store account activity
(for example, whether the user has a long history of transactions within iTunes), (b) the
user’s device (for example, the phone number, name, and model of the user’s device
plus any companion Apple device necessary to set up Apple Pay), and (c) the user’s
approximate location at the time the user adds their card (if the user has Location Services
enabled). Using this information, the card issuer determines whether to approve adding the
card to Apple Pay.

As the result of the Link and Provision process, two things occur:

•	 The device begins to download the Apple Wallet pass file representing the credit or
debit card.

•	 The device begins to bind the card to the Secure Element.

The pass file contains URLs to download card art, metadata about the card such as contact
information, the related issuer’s app, and supported features. It also contains the pass
state, which includes information such as whether the personalizing of the Secure Element
has completed, whether the card is currently suspended by the card issuer, or whether
additional verification is required before the card can make payments with Apple Pay.

Adding credit or debit cards from an iTunes Store account
For a credit or debit card on file with iTunes, the user may be required to reenter their
Apple ID password. The card number is retrieved from iTunes, and the Check Card process
is initiated. If the card is eligible for Apple Pay, the device downloads and displays terms
and conditions of the card issuer, then sends along the term’s ID and the card security
code to the Link and Provision process. Additional verification may occur for iTunes
account cards on file.

Adding credit or debit cards from a card issuer’s app
When an app is registered for use with Apple Pay, keys are established for the app and for
the card issuer’s server. These keys are used to encrypt the card information that’s sent to
the card issuer. This is designed to prevent the information from being read by the Apple
device. The provisioning flow is similar to that used for manually added cards, described
previously, except one-time passwords are used in lieu of the CVV.

167Apple Platform Security

Adding credit or debit cards from a card issuer’s website
Some card issuers provide the ability to initiate the card provisioning process for
Apple Wallet directly from their websites. In this case, the user initiates the task by
selecting a card to provision on the card issuer’s website. The user is then redirected to
a self-contained Apple sign-in experience (contained within Apple’s domain) and is asked
to sign in with their Apple ID. Upon successfully signing in, the user then chooses one or
more devices to provision the card to and is required to confirm the provisioning result on
each respective target device.

Adding additional verification
A card issuer can decide whether a credit or debit card requires additional verification.
Depending on what’s offered by the card issuer, the user may be able to choose between
different options for additional verification, such as a text message, email, a customer
service call, or a method in an approved third-party app to complete the verification.
For text messages or email, the user is presented an option to select from contact
information the issuer already holds on file. A code is sent, which must be entered into
Apple Wallet, Settings, or the Apple Watch app. For customer service or verification using
an app, the issuer performs their own communication process.

168Apple Platform Security

Payment authorization with Apple Pay
For devices having a Secure Enclave, a payment can be made only after it receives
authorization from the Secure Enclave. On iPhone, iPad, or Mac with Touch ID (or
paired with a Magic Keyboard with Touch ID), this involves confirming that the user has
authenticated with biometric authentication or the device passcode or password. Biometric
authentication, if available, is the default method, but the passcode or password can be
used at any time and is automatically offered after three unsuccessful attempts to match a
fingerprint, or (for iPhone and iPad) two unsuccessful attempts to match a face; after five
unsuccessful attempts, the passcode or password is required. A passcode or password is
also required when biometric authentication isn’t configured or turned on for Apple Pay.
For a payment to be made on Apple Watch, the device must be unlocked with passcode
and the side button must be double-clicked.

Using a shared pairing key
The Secure Enclave and Secure Element communicate over a serial interface—using
encryption and authentication based on AES, and employing cryptographic anti-replay
values to protect against replay attacks. Although the sides aren’t directly connected,
they communicate securely using a shared pairing key that’s provisioned during
manufacturing. During that process, the Secure Enclave generates the pairing key from
its UID key and from the Secure Element’s unique identifier. It then securely transfers the
pairing key to a hardware security module (HSM) in the factory. The HSM then injects the
pairing key into the Secure Element.

Authorizing a secure transaction
When the user authorizes a transaction, which includes a physical gesture communicated
directly to the Secure Enclave, the Secure Enclave then sends signed data about the
type of authentication and details about the type of transaction (contactless or within
apps) to the Secure Element, tied to an Authorization Random (AR) value. The AR value
is generated in the Secure Enclave when a user first provisions a credit card and persists
while Apple Pay is enabled, protected by the Secure Enclave encryption and anti-rollback
mechanism. It’s securely delivered to the Secure Element by leveraging the pairing key.
On receipt of a new AR value, the Secure Element marks any previously added cards as
terminated.

Using a payment cryptogram for dynamic security
Payment transactions originating from the payment applets include a payment cryptogram
along with a Device Account Number. This cryptogram, a one-time code, is computed
using a transaction counter and a key. The transaction counter is incremented for each
new transaction. The key is provisioned in the payment applet during personalization and
is known by the payment network or the card issuer or both. Depending on the payment
scheme, other data may also be used in the calculation, including:

•	 A Terminal Unpredictable Number, for near-field-communication (NFC) transactions

•	 An Apple Pay server anti-replay value, for transactions within apps

•	 User verification results, such as Cardholder Verification Method (CVM) information

These security codes are provided to the payment network and to the card issuer,
which allows the issuer to verify each transaction. The length of these security codes may
vary based on the type of transaction.

169Apple Platform Security

Paying with cards using Apple Pay
Apple Pay can be used to pay for purchases in stores, within apps, and at websites.

Paying with cards in stores
If iPhone or Apple Watch is on and detects an NFC field, it presents the user with the
requested card (if automatic selection is turned on for that card) or the default card,
which is managed in Settings. The user can also go to Apple Wallet and choose a card,
or when the device is locked, can:

•	 Double-click the side button on devices with Face ID

•	 Double-click the Home button on devices with Touch ID

•	 Using Accessibility features that allow Apple Pay from the Lock Screen

Next, before information is transmitted, the user must authenticate using Face ID,
Touch ID, or their passcode. When Apple Watch is unlocked, double-clicking the side
button activates the default card for payment. No payment information is sent without user
authentication.

After the user authenticates, the Device Account Number and a transaction-specific
dynamic security code are used when processing the payment. Neither Apple nor a user’s
device sends the full credit or debit card numbers to merchants. Apple may receive
anonymous transaction information such as the approximate time and location of the
transaction, which helps improve Apple Pay and other Apple products and services.

Paying with cards within apps
Apple Paycan also be used to make payments in iOS, iPadOS, macOS, and watchOS apps.
When users pay within apps using Apple Pay, Apple receives the encrypted transaction
information to route to the developer or merchant. Before that information is sent to the
developer or merchant, Apple reencrypts the transaction with a developer-specific key.
Apple Pay retains anonymous transaction information, such as approximate purchase
amount. This information can’t be tied to the user and never includes what the user is
buying.

When an app initiates an Apple Pay payment transaction, the Apple Pay servers receive the
encrypted transaction from the device prior to the merchant receiving it. The Apple Pay
servers then reencrypt the transaction with a merchant-specific key before relaying it to
the merchant.

When an app requests a payment, it calls an API to determine whether the device supports
Apple Pay and whether the user has credit or debit cards that can make payments on a
payment network accepted by the merchant. The app requests any pieces of information it
needs to process and fulfill the transaction, such as the billing and shipping address,
and contact information. The app then asks iOS, iPadOS, macOS, or watchOS to present
the Apple Pay sheet, which requests information for the app and other necessary
information, such as the card to use.

At this time, the app is presented with city, state, and zip code information to calculate
the final shipping cost. The full set of requested information isn’t provided to the app until
the user authorizes the payment with Face ID, Touch ID, or the device passcode. After the
payment is authorized, the information presented in the Apple Pay sheet is transferred to
the merchant.

170Apple Platform Security

Paying with cards within App Clips
An App Clip is a small part of an app that allows a user do a task quickly (such as renting
a bike or paying for parking) without downloading the full app. If an App Clip supports
payments, the user can use Sign in with Apple, then make a payment using Apple Pay.
When a user makes a payment from within an App Clip, all security and privacy measures
are the same as when a user pays within an app.

How users authorize, and merchants verify, app payments
Users and merchants ensure secure app payments by passing information to the Apple
servers, the Secure Element, the device, and the app’s API. First, when the user authorizes
an app payment, the app obtains a cryptographic anti-relay value by calling the Apple Pay
servers. The servers send this value and other transaction data to the Secure Element,
to compute a payment credential, one that’s encrypted with an Apple key. The Secure
Element then returns the payment credential to the Apple Pay servers, so that they can
decrypt it, verify its anti-replay value against the anti-replay value that the Apple Pay
servers originally sent, and reencrypt it with the Merchant ID’s associated merchant key.
The Apple servers then return the payment to the device, which hands it back to the app
API, with the API passing it along to the merchant system for processing. The merchant
decrypts the payment credential to verify that it’s the correct recipient of the transaction.

The APIs require an entitlement that specifies the supported Merchant IDs. An app can
also include additional data (such as an order number or customer identity) to send to the
Secure Element to be signed, ensuring that the transaction can’t be diverted to a different
customer. This is accomplished by the app developer, who can specify applicationData on
the PKPaymentRequest. A hash of this data is included in the encrypted payment data.
The merchant is then responsible for verifying that their applicationData hash matches
what’s included in the payment data.

171Apple Platform Security

Paying with cards at websites
Apple Pay can be used to make payments at websites on iPhone, iPad, Apple Watch,
and Mac computers with Touch ID. Apple Pay transactions can also start on a Mac and
be completed on an Apple Pay–enabled iPhone or Apple Watch using the same iCloud
account.

Apple Pay on the web requires that all participating websites register with Apple. After
the domain is registered, domain name validation is performed only after Apple issues a
TLS client certificate. Websites supporting Apple Pay are required to serve their content
over HTTPS. For each payment transaction, websites need to obtain a secure and unique
merchant session with an Apple server using the Apple-issued TLS client certificate.
Merchant session data is signed by Apple. After a merchant session signature is verified,
a website may query whether the user has an Apple Pay–capable device and whether they
have a credit, debit, or prepaid card activated on the device. No other details are shared.
If the user doesn’t want to share this information, they can disable Apple Pay queries in
Safari privacy settings on iPhone, iPad, and Mac devices.

After a merchant session is validated, all privacy and security measures are the same as
when a user pays within an app.

If the user is transmitting payment-related information from a Mac to an iPhone or
Apple Watch, Apple Pay Handoff uses the end-to-end encrypted Apple Identity Service
(IDS) protocol to transmit payment-related information between the user’s Mac and
the authorizing device. The IDS client on Mac uses the user’s device keys to perform
encryption so no other device can decrypt this information, and the keys aren’t available
to Apple. Device discovery for Apple Pay Handoff contains the type and unique identifier
of the user’s credit cards along with some metadata. The Device Account Number of the
user’s card isn’t shared, and it continues to remain stored securely on the user’s iPhone or
Apple Watch. Apple also securely transfers the user’s recently used contact, shipping,
and billing addresses over iCloud Keychain.

After the user authorizes a payment using Face ID, Touch ID, a passcode, or double-
clicking the side button on Apple Watch, a payment token—uniquely encrypted to
each website’s merchant certificate—is securely transmitted from the user’s iPhone or
Apple Watch to their Mac and then delivered to the merchant’s website.

Only devices in proximity to each other may request and complete payment. Proximity is
determined through Bluetooth Low Energy (BLE) advertisements.

172Apple Platform Security

Automatic payments and Merchant Tokens
In iOS 16 or later, apps and websites that offer Apple Pay can take advantage of Apple Pay
merchant tokens that enable secure payments consistently across a user’s devices.
The updated Apple Pay payment sheet in iOS 16 also optimizes preauthorized payment
experiences. New transaction types in the Apple Pay API allow app and website developers
to fine-tune the payment sheet experience for subscriptions, recurring bills, installment
payments, and automatic reloads of card balances.

Merchant tokens are not device-specific, and therefore allow for continuity of recurring
payments if the user removes a payment card from the device.

Payments to multiple merchants
In iOS 16 or later, Apple Pay includes the ability to specify purchase amounts for multiple
merchants within a single Apple Pay payment sheet. This allows the flexibility to let
customers make a bundled purchase, such as a travel package with flight, rental car,
and hotel, then send payments to individual merchants.

173Apple Platform Security

Contactless passes in Apple Pay
To transmit data from supported passes to compatible NFC terminals, Apple uses the
Apple Value Added Services (Apple VAS) protocol. The VAS protocol can be implemented
on contactless terminals or in iPhone apps and uses NFC to communicate with supported
Apple devices. The VAS protocol works over a short distance and can be used to present
contactless passes independently or as part of an Apple Pay transaction.

When the device is held near the NFC terminal, the terminal initiates receiving the pass
information by sending a request for a pass. If the user has a pass with the pass provider’s
identifier, the user is asked to authorize its use using Face ID, Touch ID, or a passcode.
The pass information, a timestamp, and a single-use random ECDH P-256 key are used
with the pass provider’s public key to derive an encryption key for the pass data, which is
sent to the terminal.

From iOS 12.0.1 to and including iOS 13, users may manually select a pass before
presenting it to the merchant’s NFC terminal. In iOS 13.1 or later, pass providers can
configure manually selected passes to either require user authentication or be used
without authentication.

Rendering cards unusable with Apple Pay
Credit, debit, and prepaid cards added to the Secure Element can be used only if
the Secure Element is presented with authorization using the same pairing key and
Authorization Random (AR) value from when the card was added. On receipt of a new AR
value, the Secure Element marks any previously added cards as terminated. This allows the
operating system to instruct the Secure Enclave to render cards unusable by marking its
copy of the AR as invalid under the following scenarios:

Method Device

The passcode is disabled. iPhone, iPad, Apple Watch

The password is disabled. Mac

The user signs out of iCloud. iPhone, iPad, Mac, Apple Watch

The user selects Erase All Content and Settings. iPhone, iPad, Mac, Apple Watch

The device is restored from Recovery Mode. iPhone, iPad, Mac, Apple Watch

Unpairing Apple Watch

174Apple Platform Security

Suspending, removing, and erasing cards
Users can suspend Apple Pay on iPhone, iPad, and Apple Watch by placing their devices
in Lost Mode using Find My. Users also have the ability to remove and erase their cards
from Apple Pay using Find My, iCloud.com, or directly on their devices using Apple Wallet.
On Apple Watch, cards can be removed using iCloud settings, the Apple Watch app on
iPhone, or directly on the watch. The ability to make payments using cards on the device is
suspended or removed from Apple Pay by the card issuer or respective payment network,
even if the device is offline and not connected to a cellular or Wi-Fi network. Users can
also call their card issuer to suspend or remove cards from Apple Pay.

When a user erases the entire device—using Erase All Content and Settings, using Find My,
or restoring their device—iPhone, iPad, Mac, and Apple Watch instruct the Secure Element
to mark all cards as terminated. This has the effect of immediately changing the cards to
an unusable state until the Apple Pay servers can be contacted to fully erase the cards
from the Secure Element. Independently, the Secure Enclave marks the AR as invalid so
that further payment authorizations for previously enrolled cards aren’t possible. When the
device is online, it attempts to contact the Apple Pay servers to help ensure that all cards
in the Secure Element are erased.

175Apple Platform Security

Apple Card security
On supported models of iPhone and Mac, a user can securely apply for an Apple Card.

Apple Card application
In iOS 12.4 or later, macOS 10.14.6 or later, and watchOS 5.3 or later, Apple Card can be
used with Apple Pay to make payments in stores, in apps, and on the web.

To apply for Apple Card, the user must be signed into their iCloud account on an
Apple Pay–compatible iPhone or iPad and have two-factor authentication set up on the
iCloud account, or they can apply at apply.applecard.apple after signing in with their
Apple ID. When the application is approved, Apple Card is available in Apple Wallet or
within Settings > Wallet & Apple Pay across any of the eligible devices the user has signed
in with their Apple ID.

When a user applies for Apple Card, user identity information is securely verified by Apple’s
identity provider partners and then shared with Goldman Sachs Bank USA for the purposes
of identity and credit evaluation.

Information such as the social security number or ID document image provided during the
application is securely transmitted to Apple’s identity provider partners and/or Goldman
Sachs Bank USA encrypted with their respective keys. Apple can’t decrypt this data.

The income information provided during the application, and the bank account information
used for bill payments, are securely transmitted to Goldman Sachs Bank USA encrypted
with their key. The bank account information is saved in the keychain. Apple can’t decrypt
this data.

When adding Apple Card to Apple Wallet, the same information as when a user adds a
credit or debit card may be shared with Apple’s partner bank Goldman Sachs Bank USA,
and with Apple Payments Inc. This information is used only for troubleshooting, fraud
prevention, and regulatory purposes.

In iOS 14.6 or later, iPadOS 14.6 or later, and watchOS 7.5 or later, the organizer of an
iCloud family with an Apple Card can share their card with their iCloud Family members
over the age of 13. User authentication is required to confirm the invitation. Apple Wallet
uses a key in the Secure Enclave to compute a signature that binds the owner and the
invitee. That signature is validated on Apple servers.

Optionally, the organizer can set a transaction limit for the participants. Participant cards
can also be locked to pause their spending at any time through Apple Wallet. When a
co-owner or participant over the age of 18 accepts the invitation and applies, they go
through the same application process as defined in the Apple Card application section in
Apple Wallet.

Apple Card usage
A physical card can be ordered from Apple Card in Apple Wallet. After the user receives
the physical card, it’s activated using the NFC tag that’s in the bifold envelope of the
physical card. The tag is unique per card and can’t be used to activate another user’s card.
Alternatively, the card can be manually activated in Apple Wallet settings. Additionally,
the user can also choose to lock or unlock the physical card at any time from Apple Wallet.

https://apply.applecard.apple

176Apple Platform Security

Apple Card payments and Apple Wallet pass details
Payments due on the Apple Card account can be made from a web browser or Apple Wallet
in iOS with Apple Cash and a bank account. Bill payments can be scheduled as recurring or
as a one-time payment at a specific date with Apple Cash and a bank account. When a user
makes a payment, a call is made to the Apple Pay servers to obtain a cryptographic anti-
replay value similar to Apple Cash. The anti-replay value, along with the payment setup
details, is passed to the Secure Element to compute a signature. The signature is then
returned to the Apple Pay servers. The authentication, integrity, and correctness of the
payment are verified through the signature and the anti-replay value by Apple Pay servers,
and the order is passed on to Goldman Sachs Bank USA for processing.

The Apple Card number is retrieved by Apple Wallet by presenting a certificate.
The Apple Pay server validates the certificate to confirm the key was generated in the
Secure Enclave. It then uses this key to encrypt the Apple Card number before returning it
to Apple Wallet, so that only the iPhone that requested the Apple Card number can decrypt
it. After decryption, the Apple Card number is saved in iCloud Keychain.

Displaying the Apple Card number details in the pass using Apple Wallet requires user
authentication with Face ID, Touch ID, or a passcode. It can be replaced by the user in the
card information section and disables the previous one.

Advanced Fraud Protection
In iOS 15 or later and iPadOS 15 or later, the Apple Card user can enable Advanced
Fraud Protection in Apple Wallet. When enabled, the Card Security Code refreshes every
few days.

177Apple Platform Security

Apple Cash security
In iOS 11.2 or later, iPadOS 13.1 or later, and watchOS 4.2 or later, Apple Cash can be used
on an iPhone, iPad, or Apple Watch to send, receive, and request money from other users.
When a user receives money, it’s added to an Apple Cash account that can be accessed in
Apple Wallet or within Settings > Wallet & Apple Pay across any of the eligible devices the
user has signed in with their Apple ID.

In iOS 14, iPadOS 14, and watchOS 7, the organizer of an iCloud family who has verified
their identity with Apple Cash can enable Apple Cash for their family members under the
age of 18. Optionally, the organizer can restrict the money sending capabilities of these
users to family members only or contacts only. If the family member under the age of
18 goes through an Apple ID account recovery, the organizer of the family must manually
reenable the Apple Cash card for that user. If the family member under the age of 18 is no
longer part of the iCloud family, their Apple Cash balance is automatically transferred to
the organizer’s account.

When the user sets up Apple Cash, the same information as when the user adds a credit or
debit card may be shared with our partner bank Green Dot Bank and with Apple Payments
Inc., a wholly owned subsidiary created to protect the user’s privacy by storing and
processing information separately from the rest of Apple, and in a way that the rest of
Apple doesn’t know. This information is used only for troubleshooting, fraud prevention,
and regulatory purposes.

Using Apple Cash in iMessage
To use person-to-person payments and Apple Cash, a user must be signed in to their
iCloud account on an Apple Cash–compatible device and have two-factor authentication
set up on the iCloud account. Money requests and transfers between users are initiated
from within the Messages app or by asking Siri. When a user attempts to send money,
iMessage displays the Apple Pay sheet. The Apple Cash balance is always used first.
If necessary, additional funds are drawn from a second credit or debit card the user has
added to Apple Wallet.

178Apple Platform Security

Using Apple Cash in stores, apps, and on the web
The Apple Cash card in Apple Wallet can be used with Apple Pay to make payments in
stores, in apps, and on the web. Money in the Apple Cash account can also be transferred
to a bank account. In addition to money being received from another user, money can be
added to the Apple Cash account from a debit or prepaid card in Apple Wallet.

Apple Payments Inc. stores, and may use, the user’s transaction data for troubleshooting,
fraud prevention, and regulatory purposes once a transaction is completed. The rest of
Apple doesn’t know who the user sent money to, received money from, or where the user
made a purchase with their Apple Cash card.

When the user sends money with Apple Pay, adds money to an Apple Cash account,
or transfers money to a bank account, a call is made to the Apple Pay servers to obtain a
cryptographic anti-replay value, which is similar to the value returned for Apple Pay within
apps. The anti-replay value, along with other transaction data, is passed to the Secure
Element to compute a payment signature. The signature is returned to the Apple Pay
servers. The authentication, integrity, and correctness of the transaction is verified through
the payment signature and the anti-replay value by Apple Pay servers. Money transfer is
then initiated, and the user is notified of a completed transaction.

If the transaction involves:

•	 A debit card for adding money to Apple Cash

•	 Providing supplemental money if the Apple Cash balance is insufficient

An encrypted payment credential is also produced and sent to Apple Pay servers, similar to
how Apple Pay works within apps and websites.

After the balance of the Apple Cash account exceeds a certain amount or if unusual
activity is detected, the user is prompted to verify their identity. Information provided
to verify the user’s identity—such as social security number or answers to questions
(for example, to confirm a street name the user lived on previously)—is securely
transmitted to the Apple partner and encrypted using their key. Apple can’t decrypt this
data. The user is prompted to verify their identity again if they perform an Apple ID account
recovery, before regaining access to their Apple Cash balance.

179Apple Platform Security

Tap to Pay on iPhone security
Tap to Pay on iPhone, available in iOS 15.4 or later, allows merchants to accept Apple Pay
and other contactless payments by using iPhone and a partner-enabled iOS app. With this
service, users with supported iPhone devices can securely accept contactless payments
and Apple Pay NFC-enabled passes. With Tap to Pay on iPhone, merchants don’t need
additional hardware to accept contactless payments.

Tap to Pay on iPhone is designed to protect the payer’s personal information. This service
doesn’t collect transaction information that can be tied back to the payer. Payment card
information such as Credit/Debit Card Number (PAN) is secured by the Secure Element
and isn’t visible to the merchant’s device. The payment card information stays between the
merchant’s Payment Service Provider and the payer and the card issuer. In addition,
the Tap to Pay service doesn’t collect payer’s names, addresses or phone numbers.

Tap to Pay on iPhone has been assessed externally by an accredited security laboratory
and approved for use by all accepted payment networks in the territories it is available.

Contactless payment component security
•	 Secure Element: The Secure Element hosts the payment kernels which read and secure

the contactless payment card data.

•	 NFC Controller: The NFC controller handles near field communication protocols and
routes communication between the Application Processor and the Secure Element,
and between the Secure Element and the contactless payment card.

•	 Tap to Pay on iPhone servers: The Tap to Pay on iPhone servers manage the setup and
provisioning of the payment kernels in the device. The servers also monitor the security
of the Tap to Pay on iPhone devices in a manner compatible with the Contactless
Payments on COTS (CPoC) standard from the Payment Card Industry Security
Standards Council (PCI SSC) and are PCI DSS compliant.

How Tap to Pay reads credit, debit, and prepaid cards
How Tap to Pay provisions security

Upon first use of Tap to Pay on iPhone using a sufficiently entitled app, the Tap to Pay
on iPhone server determines whether the device meets the eligibility criteria such as
Device Model, iOS version, and whether a passcode has been set. After this verification
is complete, the payment acceptance applet is downloaded from the Tap to Pay on
iPhone server and installed on the Secure Element, along with the associated payment
kernel configuration. This operation is performed securely between the Tap to Pay on
iPhone servers and the Secure Element. The Secure Element validates the integrity and
authenticity of this data prior to installation.

How Tap to Pay reads cards securely

When a Tap to Pay on iPhone app requests a card read from ProximityReader framework,
a sheet—controlled by iOS—is displayed and prompts the user to tap a payment card.
No apps can read any sensors that could give away any part of the sensitive card data
during the time the tap screen is active. iOS initializes the Payment Card Reader and then
requests the payment kernels in the Secure Element to initiate a card read.

180Apple Platform Security

At this point, the Secure Element assumes control of the NFC controller in Reader Mode.
This mode allows card data to be exchanged only between the payment card and the
Secure Element through the NFC controller. Payment cards can be read only while in
this mode.

After the payment acceptance applet on the Secure Element has completed the payment
card read, it encrypts and signs the card data. The payment card data remains encrypted
and authenticated until it reaches the Payment Service Provider. Only the Payment Service
Provider used by the app to request the card read can decrypt the payment card data.
The Payment Service Provider must request the payment card data decryption key from the
Tap to Pay on iPhone server. The Tap to Pay on iPhone server emits decryption keys to the
Payment Service Provider after validation of the integrity and authenticity of the data, and
after verifying that the card read was performed within 60 seconds of the request for the
payment card data decryption key.

This model helps ensure that the payment card data can’t be decrypted by anyone other
than the PSP, which processes this transaction for the merchant.

Using PIN entry to authorize transactions

PIN entry, available in iOS 16.0 or later, allows the payer to enter their PIN on the
merchant’s device to authorize the transaction. The PIN entry screen may be triggered
immediately after the tap based on the information exchanged with the payment card.
Alternatively, the Payment Service Provider can trigger the PIN screen by providing a
signed Token, which is valid for one transaction only.

The PIN entry mechanism has been assessed externally by an accredited security
laboratory and is approved for use by all accepted payment networks in the territories
where it is available. The PIN entry screen is protected against screenshots and screen
mirroring, and no apps can read any sensors that could give away any part of the PIN value
during the time the PIN entry screen is active.

The PIN digits entered are securely captured by the Secure Element. Using these PIN
digits, the Secure Element creates a payment industry standard–compliant encrypted PIN
block. Apple securely provides the encrypted PIN block from its PCI PIN–compliant back
end to the PSP for further processing.

The PIN value is:

•	 Never available to the merchant on their device

•	 Never decrypted by Apple at any time

•	 Never stored by Apple

181Apple Platform Security

Using Apple Wallet

Access using Apple Wallet
In Apple Wallet on supported iPhone and Apple Watch devices, users can store multiple
types of keys. When a user arrives at a door, the right key can even be automatically
presented (if Express Mode is supported by that key and was turned on), allowing them to
enter with just a tap using Near Field Communication (NFC).

User convenience
Express Mode

When a key is added to Apple Wallet, Express Mode is turned on by default. Keys in
Express Mode interact with accepting terminals without Face ID, Touch ID, passcode
authentication, or double-clicking the side button on Apple Watch. To disable this feature,
users can turn off Express Mode by tapping the More button on the front of the card
representing key in Apple Wallet. To turn Express Mode back on, they must use Face ID,
Touch ID, or a passcode.

Key sharing

In iOS 16 or later, key sharing is available for certain key types.

Users can share access to a key (for example a house or car key), with security and privacy
enforced from the key owner’s iPhone to the invited key recipient’s iPhone. Keys are shared
by tapping on the share icon of the key in Apple Wallet and can be shared using methods
that appear in the Share Sheet. Key owners can also choose the access level and valid time
period for each shared key. The key owner has visibility over all the keys that they shared
and can revoke access for any shared key, including any instances where the key is shared
again to another user by the initial key recipient.

The key sharing invitation is stored anonymized and secured by a dedicated server inside
a mailbox, and protected with an AES 128 or 256 encryption key. The encryption key is
never shared with the server or anyone, apart from intended key recipient, and only the
key recipient can decrypt the invitation. Upon mailbox creation, the key owner’s iPhone
provides a device claim that’s bound only to that mailbox by the server. When the key
recipient’s iPhone initially accesses this mailbox, it presents a key recipient device claim.
Only the key owner and key recipient iPhone devices that present valid device claims can
access that mailbox. Each iPhone device claim has its unique UUID value as per RFC4122.

As an additional security measure, the key owner can turn on a 6-digit randomly-generated
activation code that’s required on the key recipient’s iPhone. The number of code retries
is enforced and validated either by key owner or partner server. This activation code must
be communicated by the key owner to the key recipient and the key recipient must present
that code when prompted for its validation either by key owner or partner server.

After an invitation is redeemed by the key recipient, it’s immediately wiped from the server
by the receiving iPhone. The mailbox containing the key sharing invitation also has a
limited lifetime, which is set upon mailbox creation and enforced by the server. Any expired
invitations are automatically erased by the server.

Depending on the original manufacturer, keys may also be shared with non-Apple devices,
however their method of securing key sharing may be different than Apple’s.

182Apple Platform Security

Privacy and security
Access keys in Apple Wallet take full advantage of the privacy and security built into
iPhone and Apple Watch. When or where a person uses their keys in Apple Wallet is never
shared with Apple or stored on Apple servers, and credentials are securely stored inside
the Secure Element of supported devices. The Secure Element hosts specially designed
applets to securely manage keys, ensuring that they can’t be extracted or leak.

Before provisioning any keys, a user must be signed in to their iCloud account on a
compatible iPhone and have two-factor authentication turned on for their iCloud account,
with the exception of a student ID (which doesn’t require two-factor authentication to be
turned on).

When a user initiates the provisioning process, similar steps as those involved in credit
and debit card provisioning take place, such a link and provisioning. During a transaction,
the reader communicates with the Secure Element through the near-field-communication
(NFC) controller using an established secure channel.

The number of devices, including iPhone and Apple Watch, that can be provisioned with
a key is defined and controlled by each partner and can vary from one partner to another.
Such an approach allows each partner to have control over the maximum number of
provisioned keys per device type to suit their specific needs. For this purpose,
Apple supplies partners with device type and anonymized device identifiers. Identifiers are
different for every partner for privacy and security reasons.

Partners also receive user identifiers, which are anonymized and unique-per-partner, that
let them securely bind the key to the user iCloud account during the initial provisioning.
This measure protects keys from being provisioned by a different user in case a user
account created with the partner was compromised—for example—in account takeover
attack scenario.

Keys can be disabled or removed by:

•	 Erasing the device remotely with Find My

•	 Enabling Lost Mode with Find My

•	 Receiving a mobile device management (MDM) remote wipe command

•	 Removing all cards from their Apple ID account page

•	 Removing all cards from iCloud.com

•	 Removing all cards from Apple Wallet

•	 Removing the card in the issuer’s app

In iOS 15.4 or later, when a user double-clicks the side button on an iPhone with Face ID
or double-clicks the Home button on an iPhone with Touch ID, their passes and access
key details aren’t displayed until they authenticate to the device. Either Face ID, Touch ID,
or passcode authentication is required before pass specific information including hotel
booking details are displayed in Apple Wallet.

183Apple Platform Security

Access key types
There are different types of access from Apple Wallet, such as hospitality,
corporate badges, student IDs, home keys, and car keys.

Hospitality
Hotel room keys in Apple Wallet help deliver an easy and contactless experience from
check-in to check-out, while providing additional privacy and security benefits for guests
on top of traditional plastic hotel key cards. Hotel guests at supported locations can tap to
unlock with room keys in Apple Wallet on their compatible iPhones and Apple Watch Series
4 or later.

The capabilities in Apple Wallet are specifically designed to reduce friction for the
customer:

•	 Prearrival provisioning from the hotel’s app, to add a pass to Apple Wallet ahead of a
stay

•	 Check-in pass tiles, to initiate check-ins and room assignments from Apple Wallet

•	 Post-provisioning key updates, to support extending or modifying current stays

•	 Multi-room key support for a single pass in Apple Wallet

•	 Auto-archiving of expired keys in Apple Wallet

Disney MagicMobile passes
Users can add a Disney MagicMobile Pass to Apple Wallet on iPhone or Apple Watch to
enter participating Disney theme parks. MagicMobile Passes can be used for entry into the
park as well as at other applicable readers throughout the parks.

To add a Disney MagicMobile Pass, in addition to having two-factor authentication enabled
on their iCloud account, a user must have tickets or reservations to a participating
theme park associated with a valid My Disney Experience account. From the My Disney
Experience app on their iPhone, the user can select one or more passes to add to
Apple Wallet. If the user has a paired Apple Watch, the selected passes are automatically
provisioned onto both the user’s iPhone and their paired Apple Watch. Express Mode is
turned on by default for passes added to both iPhone and Apple Watch devices. For ease
of use, when Express Mode is turned on, it’s turned on for all MagicMobile passes currently
on the device.

Multiple passes can be added to a single device so that users can manage the passes for
all members of their party. Users may also choose to use the My Disney Experience app to
share passes with other users. In this way, recipients can add the shared passes to their
devices’ Apple Wallet.

https://support.apple.com/guide/iphone/aside/iphc8f4f9dd1

184Apple Platform Security

Corporate badges
Employee badges of supported partners can be added to Apple Wallet on iPhone and
Apple Watch, allowing employees around the world contactless access to their workplaces.
To add a badge, an employee must have multifactor authentication enabled for their
account used to sign in to the app provided by their employer.

Employee badge takes advantage of Apple’s access capabilities, allowing users to:

•	 Automatically add an employee badge to their paired Apple Watch through push
provisioning that doesn’t require installing a partner’s app

•	 Seamlessly access office amenities utilizing Express Mode

•	 Gain access to the workplace even after their iPhone runs out of battery

Student ID cards
In iOS 12 or later, students, faculty, and staff at participating campuses can add their
student ID card to Apple Wallet on supported models of iPhone and Apple Watch to access
locations and pay wherever their card is accepted.

A user adds their student ID card to Apple Wallet through an app provided by the card
issuer or participating school. The technical process by which this occurs is the same as
the one described in Adding credit or debit cards from a card issuer’s app. In addition,
issuing apps must support two-factor authentication on the accounts that guard access
to their student IDs. A card may be set up simultaneously on a user’s iPhone and a paired
Apple Watch.

Multifamily homes
Tenants and staff of supported partner facilities can use their home key in Apple Wallet
to access their building, unit, and common areas. The home key can be provisioned from
the app provided by the partner. For partners that support frictionless provisioning,
property managers can send tenants a link to initiate provisioning using their preferred
messaging channel (for example, email or SMS) so that the tenant only needs to click the
link to redeem the key. App Clips also provide a secure and seamless experience, making it
possible to provision a key without installing a partner’s app. For more information, see the
Apple Support article Use App Clips on iPhone.

Multi-family home key can also be used in Express Mode and can be securely shared with
friends and family members. For more information, see Key sharing.

https://support.apple.com/guide/iphone/iphb3a73ec53

185Apple Platform Security

Home key
A home key in Apple Wallet can be used with supported NFC-enabled door locks with a
simple tap of an iPhone or Apple Watch. For more information about how a user can set up
and use a home key, see the Apple Support article Unlock your door with a home key on
iPhone.

When a user sets up a home key, all residents in their household also automatically receive
the home key. To further share a home key or remove a member of a shared home,
the owner of a home can use the Home app to manage invitations and members. When
a user chooses to accept an invitation to join a home with a home key, this initiates
provisioning of the home key into Apple Wallet on their devices. If a user chooses to leave
a home or if the home owner withdraws their access, these actions also remove the home
key from Apple Wallet.

Car key
Storing car keys digitally in Apple Wallet is available natively in supported iPhone devices
and paired Apple Watch devices. Car keys are represented as passes (created by Apple
on behalf of the automaker) in Apple Wallet and support the full Apple Pay card life cycle
(iCloud Lost Mode, Remote Wipe, local pass deletion, and Erase All Content and Settings).
As with standard Apple Pay cards, shared car keys can be deleted from the owner’s iPhone,
Apple Watch, and in the vehicle’s Human Machine Interface (HMI).

Car keys can be used, for example, to unlock and lock the vehicle, open and close the
trunk, turn the alarm on and off, start the engine, or set the vehicle into drive mode.
The “standard transaction” offers mutual authentication and is mandatory for engine
start. Unlock and lock transactions might use the “fast transaction” when required for
performance reasons.

Keys are created by connecting (or pairing) an iPhone with an owned and supported
vehicle. All keys are created inside Secure Element based on elliptic curve (NIST
P-256) on-board key generation (ECC-OBKG), and the private keys never leave the
Secure Element. Communication between devices and the vehicle uses either NFC or
a combination of Bluetooth® LE and Ultra-WideBand (UWB). Key management uses an
Apple to automaker server API with mutually authenticated TLS. After a key is paired with
an iPhone, any Apple Watch paired with that iPhone can also receive a key. When a key is
deleted either in the vehicle or on the device, it can’t be restored. Keys on lost or stolen
devices can be suspended and resumed, but reprovisioning them on a new device requires
a new pairing or sharing.

Car keys can also be used in Express Mode and can be securely shared with friends and
family members. For more information, see Key sharing. For more information on security
and privacy of the digital car keys, see Car key security.

https://support.apple.com/guide/iphone/iph0dc255875
https://support.apple.com/guide/iphone/iph0dc255875

186Apple Platform Security

Scooter key
In iOS 17 or later and in certain countries or regions with supported partners, users can get
a scooter key provisioned from the partner app directly into Apple Wallet on supported an
iPhone and paired Apple Watch for the following purposes:

•	 Tap to lock or unlock the scooter

•	 Tap to lock or unlock the scooter’s trunk (if available)

A dedicated applet in the Secure Element securely handles cryptographic credentials
associated with the scooter key and allows secure transactions the with scooter.

On the back of the pass users can access additional information about their scooters,
such as the last four digits of vehicle identification number (VIN) and its license or number
plate. Such information may be considered private and can be accessed only when using
biometric authentication or the device passcode.

The scooter key can also be used in Express Mode and can be securely shared with friends
and family members. For more information, see Key sharing.

187Apple Platform Security

Car key security in iOS
Developers can support secure keyless ways to access a vehicle in a supported iPhone and
paired Apple Watch.

Owner pairing
The owner must prove possession of the vehicle (the method is dependent on the
automaker) and can start the pairing process in the automaker’s app using an email
link received from the automaker or from the vehicle menu. In all cases, the owner must
present a confidential one-time pairing password to the iPhone, which is used to generate
a secure pairing channel using the SPAKE2+ protocol with the NIST P-256 curve.
When using the app or the email link, the password is automatically transferred to the
iPhone, where it must be entered manually when pairing is started from the vehicle.

Key sharing
The owner’s paired iPhone can share keys to eligible family members’ and friends’ iPhone
devices (and their paired Apple Watch devices) by sending a device-specific invitation
using iMessage and the Apple Identity Service (IDS). All sharing commands are exchanged
using the end-to-end encrypted IDS feature. The owner’s paired iPhone keeps the IDS
channel from changing during the sharing process to protect against invitation forwarding.

Upon acceptance of the invitation, the family member’s or friend’s iPhone creates a digital
key and sends the key creation certificate chain back to the owner’s paired iPhone to
verify that the key was created on an authentic Apple device. The owner’s paired iPhone
signs the ECC-public key of the other family member’s or friend’s iPhone and sends the
signature back to the family member’s or friend’s iPhone. The signing operation in the
owner device requires user authentication (Face ID, Touch ID, or passcode entry) and
a secure user intent described in Uses for Face ID and Touch ID. The authorization is
requested when sending the invitation and is stored in the secure element for consumption
when the friend device sends back the signing request. The key entitlements are provided
to the vehicle either online by the vehicle OEM server or during the first use of the shared
key on the vehicle.

Key deletion
Keys can be deleted on the keyholder device from the owner device and in the vehicle.
Deletions on the keyholder iPhone are effective immediately, even if the keyholder is using
the key. Therefore a strong warning is shown before the deletion. Deletion of keys in the
vehicle might be possible anytime or only be possible when the vehicle is online.

In both cases, the deletion on keyholder device or vehicle is reported to a key inventory
server (KIS) on the automaker side, which registers issued keys for a vehicle for insurance
purposes.

The owner can request a deletion from the back of the owner pass. The request is first sent
to the automaker for key removal in the vehicle. The conditions for removing the key from
the vehicle are defined by the automaker. Only when the key is removed in the vehicle will
the automaker server send a remote termination request to the keyholder device.

When a key is terminated in a device, the applet that manages the digital car keys creates
a cryptographically signed termination attestation, which is used as proof of deletion by
the automaker and used to remove the key from the KIS.

188Apple Platform Security

NFC standard transactions
For vehicles using an NFC key, a secure channel between the reader and an iPhone is
initiated by generating ephemeral key pairs on the reader and the iPhone side. Using a key
agreement method, a shared secret can be derived on both sides and used for generation
of a shared symmetric key using Diffie-Hellman, a key derivation function, and signatures
from the long-term key established during pairing.

The ephemeral public key generated on the vehicle side is signed with the reader’s long-
term private key, which results in an authentication of the reader by the iPhone. From the
iPhone perspective, this protocol is designed to prevent privacy-sensitive data from being
revealed to an adversary intercepting the communication.

Finally, the iPhone uses the established secure channel to encrypt its public key identifier
along with the signature computed on a reader’s data-derived challenge and some
additional app-specific data. This verification of the iPhone signature by the reader allows
the reader to authenticate the device.

Fast transactions
The iPhone generates a cryptogram based on a secret previously shared during a standard
transaction. This cryptogram allows the vehicle to quickly authenticate the device in
performance sensitive scenarios. Optionally, a secure channel between the vehicle and the
device is established by deriving session keys from a secret previously shared during a
standard transaction and a new ephemeral key pair. The ability of the vehicle to establish
the secure channel authenticates the vehicle to the iPhone.

BLE/UWB standard transactions
For vehicles using a UWB key, a Bluetooth LE session is established between the vehicle
and the iPhone. Similar to the NFC transaction, a shared secret is derived on both sides
and used for the establishment of a secure session. This session is used to subsequently
derive and agree a UWB Ranging Secret Key (URSK). The URSK is provided to UWB radios
in the user’s device and on the vehicle to enable accurate localization of the user’s device
to a specific position near to or inside the vehicle. The vehicle then uses the device
position to make decisions about allowing unlocking or starting of the vehicle. URSKs
have a predefined TTL. To avoid interruption of ranging when a TTL expires, URSKs can be
prederived in the device SE and the vehicle HSM/SE while secure ranging isn’t active but
BLE is connected. This avoids the need for a standard transaction to derive a new URSK in
a time-critical situation. The prederived URSK can be transferred very quickly to the UWB
radios of car and device to avoid interrupting the UWB ranging.

Privacy
The automaker’s key inventory server (KIS) doesn’t store the device ID, SEID, or Apple ID.
It stores only a mutable identifier—the instance CA identifier. This identifier isn’t bound to
any private data in the device or by the server, and it’s deleted when the user wipes their
device completely (using Erase All Contents and Settings).

189Apple Platform Security

Adding transit and eMoney cards to Apple Wallet
In many global markets, users can add supported transit and eMoney cards to Apple Wallet
on supported models of iPhone and Apple Watch. Depending on the operator, this may
be done by transferring the value or commuter pass (or both) from a physical card into its
digital Apple Wallet representation, or by provisioning a new transit or eMoney card from
Apple Wallet or the card issuer’s app. After transit cards are added to Apple Wallet, users
can ride transit simply by holding their iPhone or Apple Watch near the transit reader.
Some transit cards can also be used to make payments.

How transit and eMoney cards work
Added transit and eMoney cards are associated with a user’s iCloud account. If the
user adds more than one card to Apple Wallet, Apple or the card issuer may be able to
link the user’s personal information and the associated account information between
cards. Transit and eMoney cards and transactions are protected by a set of hierarchical
cryptographic keys.

During the process of transferring the balance from a physical card to Apple Wallet, users
are required to enter card-specific information. Users may also need to provide personal
information for proof of card possession. When transferring passes from iPhone to
Apple Watch, both devices must be online.

The balance can be recharged with funds from credit, debit, and prepaid cards through
Apple Wallet or from the transit or eMoney card issuer’s app. To understand the security
of reloading the balance when using Apple Pay, see Paying with cards within apps. To learn
how the card is provisioned from within the card issuer’s app, see Adding credit or debit
cards from a card issuer’s app.

If provisioning from a physical card is supported, the transit or eMoney card issuer has the
cryptographic keys needed to authenticate the physical card and verify the user’s entered
data. After the data is verified, the system can create a Device Account Number for the
Secure Element and activate the newly added pass in Apple Wallet with the transferred
balance. For some cards, after provisioning from the physical card is complete, the
physical card is disabled.

At the end of either type of provisioning, if the card balance is stored on the device,
it’s encrypted and stored to a designated applet in the Secure Element. The operator has
the keys to perform cryptographic operations on the card data for balance transactions.

By default, transit card users benefit from the seamless Express Transit experience that
allows them to pay and ride without requiring Face ID, Touch ID, or a passcode. Information
such as recently visited stations, transaction history, and additional tickets may be
accessed by any nearby contactless card reader with Express Mode enabled. Users can
turn on the Face ID, Touch ID, or the passcode authorization requirement in the Wallet &
Apple Pay settings by disabling Express Transit. Express Mode isn’t supported for eMoney
cards.

As with other Apple Pay cards, users can suspend or remove eMoney cards by:

•	 Erasing the device remotely with Find My

•	 Enabling Lost Mode with Find My

•	 Entering a mobile device management (MDM) remote wipe command

•	 Removing all cards from their Apple ID account page

190Apple Platform Security

•	 Removing all cards from iCloud.com

•	 Removing all cards from Apple Wallet

•	 Removing the card in the issuer’s app

Apple Pay servers notify the card operator to suspend or disable those cards. If a user
removes a transit or eMoney card from an online device, the balance can be recovered by
adding it back to a device signed in with the same Apple ID. If a device is offline, powered
off, or unusable, recovery may not be possible.

Adding transit and eMoney cards to a family member’s Apple Watch
In iOS 15 or later, and watchOS 8, or later, the organizer of an iCloud family can add transit
and eMoney cards to their family members’ Apple Watch devices through their iPhone’s
Watch app. When provisioning one of these cards to a family member’s Apple Watch,
the watch is required to be nearby and connected to the organizer’s iPhone using Wi-Fi or
Bluetooth. Family members are required to have two-factor authentication enabled for their
Apple ID for this to occur.

Family members can send a request to add money to a transit or eMoney card from their
Apple Watch using iMessage. The content of the message is protected by end-to-end
encryption, as described in iMessage security overview. Adding money to a card on a
family member’s Apple Watch can be done remotely using a Wi-Fi or cellular connection.
Proximity isn’t required.

Note: This feature may not be available in all countries or regions.

Credit and debit cards
In some cities, transit readers accept EMV (smart) cards to pay for transit rides.
When users present an EMV credit or debit card to those readers, user authentication is
required, just as with “Pay with credit and debit cards in the stores.”

In iOS 12.3 or later, some existing EMV credit/debit cards in Apple Wallet can be enabled
for Express Transit. Express Transit lets users pay for a trip at supported transit operators
without requiring Face ID, Touch ID, or a passcode. When a user provisions an EMV credit
or debit card, the first card provisioned to Apple Wallet is enabled for Express Transit.
The user can tap the More button on the front of the card in Apple Wallet and disable
Express Transit for that card by setting Express Transit Settings to None. The user can
also select a different credit or debit card as their Express Transit card using Apple Wallet.
Face ID, Touch ID, or a passcode is required to reenable or select a different card for
Express Transit.

Apple Card and Apple Cash are eligible for Express Transit.

191Apple Platform Security

IDs in Apple Wallet

IDs in Apple Wallet

On iPhone 8 or later running iOS 15.4 or later and Apple Watch Series 4 or later running
watchOS 8.4 or later, users can add their state ID or driver’s license to Apple Wallet and
tap their iPhone or Apple Watch to seamlessly and securely present it at participating
locations.

Note: This feature is available only with participating U.S. states.

IDs in Apple Wallet use security features built into the hardware and software of the user’s
device to help protect their identity and help keep their personal information secure.

Adding a driver’s license or state ID to Apple Wallet
On iPhone, users can simply tap the Add (+) button at the top of the screen in Apple Wallet
to begin adding their license or ID. If users have an Apple Watch paired at the time of
setup, they are prompted to also add their driver’s license or ID to their Apple Wallet on
Apple Watch.

Users are first asked to use their iPhone to scan the front and back of their physical
driver’s license or state ID card. The iPhone evaluates the quality and type of images to
help ensure that the images provided are acceptable by the state issuing authority.
These identity card images are encrypted to the state-issuing authority’s key on the device
and then sent to the state-issuing authority.

Next, the user is asked to complete a series of facial and head movements.
These movements are evaluated by the user’s device and by Apple to help reduce the
risk of someone using a photograph, video or mask to try to add someone else’s ID to
Apple Wallet. Results from the analysis of these movements are then sent to the state
issuing authority, but not the video of the movements themselves.

To help ensure that the person adding the identity card to Apple Wallet is the same person
the identity card belongs to, users are asked to take a selfie. Before the user’s photo is
submitted to the state-issuing authority, Apple servers and the user’s device compare
the photo with the likeness of the person who performed the series of facial and head
movements and helps ensure that the photo being submitted is of a live person with the
same likeness as that on the ID. Once the comparison is made, the photo is encrypted on
device and then sent to the state-issuing authority to be compared against their image on
file for their ID.

Last, users are asked to perform a Face ID or Touch ID authentication. The user’s device
ties this single matched Face ID or Touch ID biometric to the state ID to help ensure that
only the person who added the ID to this iPhone can present it; other enrolled biometric
information can’t be used to authorize presentation of the ID. This occurs strictly on device
and isn’t sent to the state-issuing authority.

The state-issuing authority will receive information necessary to set up the digital ID.
This includes images of the front and back of the user’s ID, data read from the PDF417
barcode as well as the selfie the user took as part of the ID verification process.
The issuing state also receives a single-digit value, used to help prevent fraud, that’s
based on the user’s device use patterns, settings data, and information about their
personal Apple ID. It’s then ultimately the issuing state’s decision to approve or deny the ID
being added to Apple Wallet.

192Apple Platform Security

After the state issuing authority authorizes adding the state ID or Driver’s License to
Apple Wallet, a key pair is generated in the Secure Element by iPhone that anchors the
user’s ID to that specific device. If adding to Apple Watch, a key pair is generated in the
Secure Element by Apple Watch.

After the ID is on iPhone, the information reflected on the user’s ID in Apple Wallet is
stored in an encrypted format protected by the Secure Enclave.

Using a driver’s license or state ID in Apple Wallet with an identity reader
To use their ID in Apple Wallet, users need to authenticate with the Face ID or Touch ID
device associated with the ID in Apple Wallet before iPhone presents the information to the
identity reader.

To use their ID in Apple Wallet on Apple Watch, users need to unlock their iPhone using
the associated Face ID appearance or Touch ID fingerprint each time they put on their
Apple Watch. Then, they can use their ID in Apple Wallet without authenticating until
they take their Apple Watch off again. This capability leverages foundational Auto Unlock
capabilities detailed in System security for watchOS.

When users hold their iPhone or Apple Watch near the identity reader, or when sharing
their ID within an app, users see a prompt on device displaying which specific information
is being requested, by whom, and if they intend on storing it. After authorizing with the
associated Face ID or Touch ID, the requested identity information is released from the
device.

Important: Users don’t need to unlock, show, or hand over their device to present their ID.

If users have an accessibility feature like Voice Control, Switch Control, or Assistive Touch
instead of having Face ID or Touch ID enabled, they can use their passcode to access and
present their information.

Transmission of identity data to the identity reader follows the ISO/IEC 18013-5 standard,
which provides for multiple security mechanisms available that are able to detect,
deter and mitigate security risks. These consist of identity data integrity and antiforgery,
device binding, informed consent, and user data confidentiality over radio links.

Using a driver’s license or state ID in Apple Wallet with iOS apps
Users can also share their driver’s license or state ID information in Apple Wallet with iOS
apps. When a user shares their ID with an app, Wallet will fetch and validate an encryption
certificate that is registered with the app developer.

This certificate will be used to encrypt the information that the user has agreed to share.
The information is encrypted by Wallet using HPKE and is never made available to Apple.
Wallet periodically queries Apple servers to verify that the ID is still valid. If no check has
been performed recently, one may occur when the user shares their ID with an app.

193Apple Platform Security

Security of IDs in Apple Wallet

The following features help increase the security of using IDs in Apple Wallet.

Identity data integrity and antiforgery
IDs in Apple Wallet use an issuer-provided signature to allow any ISO/IEC 18013-5
compliant reader to verify a user’s ID in Apple Wallet. In addition, all data elements on ID in
Wallet are individually protected against forgery. This allows the identity reader to request
a specific subset of the data elements present on the ID in Apple Wallet and for the ID in
Apple Wallet to respond with that same subset, thus only sharing the requested data and
maximizing the user’s privacy.

Device binding
IDs in Apple Wallet authentication use a device signature to protect against the cloning
of an ID and the replay of an identity presentation. Apple Wallet stores the private key for
ID authentication in the iPhone device’s Secure Element, so the ID is bound to the same
device that the state-issuing authority created the ID for.

Informed consent
IDs in Apple Wallet may use authentication to identify the reader using the protocol defined
in the ISO/IEC 18013-5 standard. During presentation, if the reader has its own certificate
that’s trusted by Apple Wallet, an icon is shown to them to give the user an assurance that
they’re interacting with the intended party.

User data confidentiality over radio links
Session encryption helps ensure that all personally identifiable information (PII) exchanged
between the ID in Apple Wallet and that the identity reader is encrypted. Encryption is
performed by the application layer. The security of session encryption is therefore not
reliant on the security provided by the transmission layer (for example, NFC, Bluetooth,
and Wi-Fi).

IDs in Apple Wallet help keep users’ information private
IDs in Apple Wallet adhere to the “device retrieval” process outlined in ISO/IEC 18013-5.
Device retrieval obviates the need to make server calls during presentment,
thereby protecting users from being tracked by Apple and the issuer.

194Apple Platform Security

ID verifier security
In iOS 17 or later, U.S. businesses and organizations can use iPhone to seamlessly and
securely read ISO 18013-5 compliant mobile IDs in person—without the need for external
hardware. ID Verifier can be used in two different ways, depending on the verification
use case:

•	 ID Verifier Display Only: This enables use of an iOS user interface to display Name, Age,
ID Photo, and Age Over N data for use cases that only require visual confirmation.
This service doesn’t permit personally identifiable information (PII) collection that can
be tied back to the presenter.

•	 ID Verifier Data Transfer: This enables apps to request additional data elements,
such as date of birth and address, in order to meet legal verification requirements.
Access to the ID Verifier Data Transfer API is managed with entitlements, and apps
must conform to requirements with respect to how data is used. For example, apps
must demonstrate a legal requirement to request identity data. Apps are also required
to maintain a privacy policy that details its processing, storage, or other use of the
requested identity data.

Reading a mobile ID
ID Verifier follows the protocol defined in the ISO/IEC 18013-5 standard. When an app using
the ID Verifier API requests to read a mobile ID, a sheet—controlled by iOS—is displayed
and prompts the mobile ID holder to hold their device near the identity reader. That initial
NFC engagement (as defined by the ISO/IEC 18013-5 standard, a QR code can be used to
initiate a Bluetooth handover process instead of NFC) establishes a secure Bluetooth® Low
Energy (BLE) connection between both devices. At that point, the mobile ID holder can
review on their device the information that is being requested. After the mobile ID holder
consents, the requested identity data is transferred to the reading device. Apps using the
ID Verifier Data Transfer API receive the response data for processing, while apps using the
ID Verifier Display Only API see data displayed by iOS directly.

The ISO/IEC 18013-5 standard provides for multiple security mechanisms to detect, deter,
and mitigate security risks. Among those, ID Verifier performs both issuer signature and
device signature validation. Additionally, ID Verifier supports reader authentication using
the protocol defined in the ISO/IEC 18013-5 standard. Apps can choose to display an icon
and name to deliver assurance that the ID holder is interacting with the intended party
using the reader’s certificate.

195Apple Platform Security

Issuer and device validation
As a protection against forgery, ID Verifier validates the signature of the Mobile Security
Object by the trusted issuer of the mobile identity. ID Verifier Data Transfer also provides
an API that enables apps to conduct their own signature validation, instead of iOS,
if desired. To deliver an assurance to the business or organization that the mobile ID
has not been copied from one device to another, ID Verifier validates the signature over
session data.

Reader authentication
At the time of presentment, the ID Verifier reader request is signed by the private key
associated with the reader authentication certificate that chains up to the Apple Root
certificate authority (CA), which contains relevant x509 custom extensions to indicate
to the holder if the business intends to store the data. If an application would like to
display name and icon to the ID holder, the app administrator is required to register using
Apple Business Register and provide accurate branding information. After the submitted
information is successfully verified, at the time of a transaction, the reader authentication
certificate provides the ID holder with the information about the entity from Apple Register
via the reader authentication certificate.

196Apple Platform Security

iMessage

iMessage security overview
Apple iMessage is a messaging service for iPhone and iPad devices, Apple Watch, and Mac
computers. iMessage supports text and attachments such as photos, contacts, locations,
links, and attachments directly on to a message, such as a thumbs up icon. Messages
appear on all of a user’s registered devices so that a conversation can be continued from
any of the user’s devices. iMessage makes extensive use of the Apple Push Notification
service (APNs). Apple doesn’t log the contents of messages or attachments, which are
protected by end-to-end encryption so no one but the sender and receiver can access
them. Apple can’t decrypt the data.

When a user turns on iMessage on a device, the device generates encryption and signing
pairs of keys for use with the service. For encryption, there is an encryption
RSA 1280-bit key as well as an encryption EC 256-bit key on the NIST P-256 curve.
For signatures, Elliptic Curve Digital Signature Algorithm (ECDSA) 256-bit signing keys
are used. The private keys are saved in the device’s keychain and only available after first
unlock. The public keys are sent to Apple Identity Service (IDS), where they are associated
with the user’s phone number or email address, along with the device’s APNs address.

As users enable additional devices for use with iMessage, their encryption and signing
public keys, APNs addresses, and associated phone numbers are added to the directory
service. Users can also add more email addresses, which are verified by sending a
confirmation link. Phone numbers are verified by the carrier network and SIM. With some
networks, this requires using SMS (the user is presented with a confirmation dialog if
the SMS isn’t zero rated). Phone number verification may be required for several system
services in addition to iMessage, such as FaceTime and iCloud. All of the user’s registered
devices display an alert message when a new device, phone number, or email address is
added.

197Apple Platform Security

How iMessage sends and receives messages securely
Users start a new iMessage conversation by entering an address or name. If they enter
a phone number or email address, the device contacts the Apple Identity Service (IDS)
to retrieve the public keys and APNs addresses for all of the devices associated with the
addressee. If the user enters a name, the device first uses the user’s Contacts app to
gather the phone numbers and email addresses associated with that name and then gets
the public keys and APNs addresses from IDS.

The user’s outgoing message is individually encrypted for each of the receiver’s devices.
The public encryption keys and signing keys of the receiving devices are retrieved from
IDS. For each receiving device, the sending device generates a random 88-bit value and
uses it as an HMAC-SHA256 key to construct a 40-bit value derived from the sender and
receiver public key and the plaintext. The concatenation of the 88-bit and 40-bit values
makes a 128-bit key, which encrypts the message with it using AES in Counter (CTR)
Mode. The 40-bit value is used by the receiver side to verify the integrity of the decrypted
plaintext. This per-message AES key is encrypted using RSA-OAEP to the public key of
the receiving device. The combination of the encrypted message text and the encrypted
message key is then hashed with SHA-1, and the hash is signed with the Elliptic Curve
Digital Signature Algorithm (ECDSA) using the sending device’s private signing key.
In iOS 13 or later and iPadOS 13.1 or later, devices may use an Elliptic Curve Integrated
Encryption Scheme (ECIES) encryption instead of RSA encryption.

The resulting messages, one for each receiving device, consist of the encrypted message
text, the encrypted message key, and the sender’s digital signature. They are then
dispatched to the APNs for delivery. Metadata, such as the timestamp and APNs routing
information, isn’t encrypted. Communication with APNs is encrypted using a forward-
secret TLS channel.

198Apple Platform Security

APNs can only relay messages up to 4 or 16 KB in size, depending on the iOS or iPadOS
version. If the message text is too long or if an attachment such as a photo is included,
the attachment is encrypted using AES in CTR mode with a randomly generated
256-bit key and uploaded to iCloud. The AES key for the attachment, its Uniform Resource
Identifier (URI), and an SHA-1 hash of its encrypted form are then sent to the recipient
as the contents of an iMessage, with their confidentiality and integrity protected through
normal iMessage encryption, as shown in the following diagram.

For group conversations, this process is repeated for each recipient and their devices.

On the receiving side, each device receives its copy of the message from APNs and,
if necessary, retrieves the attachment from iCloud. The incoming phone number or
email address of the sender is matched to the receiver’s contacts so that a name can be
displayed when possible.

As with all push notifications, the message is deleted from APNs when it’s delivered.
Unlike other APNs notifications, however, iMessage messages are queued for delivery to
offline devices. Messages are stored on Apple servers for up to 30 days.

199Apple Platform Security

Secure iMessage name and photo sharing
iMessage Name and Photo Sharing allows a user to share a Name and Photo using
iMessage. The user may select their My Card information, or customize the name and
include any image they choose. iMessage Name and Photo sharing uses a two-stage
system to distribute the name and photo.

The data is subdivided in fields, each encrypted and authenticated separately as well as
authenticated together with the process below. There are three fields:

•	 Name

•	 Photo

•	 Photo filename

One of the first steps in creating the data is to randomly generate a record 128-bit key
on the device. This record key is then derived with HKDF-HMAC-SHA256 to create three
subkeys: Key 1:Key 2:Key 3 = HKDF(record key, “nicknames”). For each field, a random
96-bit Initialization Vector (IV) is generated and the data is encrypted using AES-CTR and
Key 1. A message authentication code (MAC) is then computed with HMAC-SHA256 using
Key 2 and covering the field name, the field IV, and the field ciphertext. Finally, the set
of individual field MAC values are concatenated and their MAC is computed with HMAC-
SHA256 using Key 3. The 256-bit MAC is stored along side the encrypted data. The first
128 bits of this MAC is used as RecordID.

This encrypted record is then stored in the CloudKit public database under the RecordID.
This record is never mutated, and when the user chooses to change their name and photo,
a new encrypted record is generated each time. When user 1 chooses to share their
name and photo with user 2, they send the record key along with the recordID inside their
iMessage payload, which is encrypted.

When user 2’s device receives this iMessage payload, it notices that the payload contains a
Nickname and Photo recordID and key. User 2’s device then goes out to the public CloudKit
database to retrieve the encrypted name and photo at the record ID and sends it across
using iMessage.

After the message is retrieved, user 2’s device decrypts the payload and verifies the
signature using the recordID itself. If this passes, user 2 is presented with the name and
photo and they can choose to add this to their contacts, or use it for Messages.

200Apple Platform Security

Secure Apple Messages for Business
Apple Messages for Business is a messaging service that allows users to communicate
with businesses using the Messages app. With Apple Messages for Business, the user is
always in control of the conversation. They can also delete the conversation and block
the business from messaging them in the future. For privacy, the business doesn’t receive
the user’s phone number, email address, or iCloud account information. Instead, a custom
unique identifier called the Opaque ID is generated by the Apple Identity Service (IDS)
and shared with the business. The Opaque ID is unique to the relationship between the
user’s Apple ID and the business’s Business ID. A user has a different Opaque ID for every
business they contact using Apple Messages for Business. The user decides if and when to
share personal identifying information with the business and Apple Messages for Business
service never stores conversation history.

Apple Messages for Business supports Managed Apple IDs from Apple Business Manager
and determines whether they are enabled for iMessage and FaceTime in Apple School
Manager.

Messages sent to the business are encrypted between the user’s device and Apple’s
messaging servers, using the same security and Apple messaging servers as iMessages.
Apple messaging servers decrypt these messages in RAM, and relay them to the business
over an encrypted link using TLS 1.2. Messages are never stored in unencrypted form while
transiting through the Apple Messages for Business service. Businesses’ replies are also
sent using TLS 1.2 to the Apple messaging servers, where they are encrypted using the
unique public keys of each recipient device.

If user devices are online, the message is delivered immediately and isn’t cached on the
Apple messaging servers. If a user’s device isn’t online, the encrypted message is cached
for up to 30 days to enable the user to receive it when the device is back online. As soon
as the device is back online, the message is delivered and deleted from cache. After 30
days, an undelivered cached message expires and is permanently deleted.

201Apple Platform Security

FaceTime security
FaceTime is Apple’s video and audio calling service. Like iMessage, FaceTime calls use
the Apple Push Notification service (APNs) to establish an initial connection to the user’s
registered devices. The audio/video contents of FaceTime calls are protected by end-
to-end encryption, so no one but the sender and receiver can access them. Apple can’t
decrypt the data.

The initial FaceTime connection is made through an Apple server infrastructure that relays
data packets between the users’ registered devices. Using APNs notifications and Session
Traversal Utilities for NAT (STUN) messages over the relayed connection, the devices
verify their identity certificates and establish a shared secret for each session. The shared
secret is used to derive session keys for media channels streamed using the Secure Real-
time Transport Protocol (SRTP). SRTP packets are encrypted using AES256 in Counter
Mode and authenticated with HMAC-SHA1. After the initial connection and security setup,
FaceTime uses STUN and Internet Connectivity Establishment (ICE) to establish a peer-to-
peer connection between devices, if possible.

Group FaceTime extends FaceTime to support up to 33 concurrent participants.
As with classic one-to-one FaceTime, calls are end-to-end encrypted among the invited
participants’ devices. Even though Group FaceTime reuses much of the infrastructure and
design of one-to-one FaceTime, these group calls feature a key-establishment mechanism
built on top of the authenticity provided by Apple Identity Service (IDS). This protocol
provides forward secrecy, meaning that the compromise of a user’s device won’t leak the
contents of past calls. Session keys are wrapped using AES-SIV and are distributed among
participants using an Elliptic Curve Integrated Encryption Scheme (ECIES) construction
with ephemeral P-256 ECDH keys.

When a new phone number or email address is added to an ongoing Group FaceTime call,
active devices establish new media keys and never share previously used keys with the
newly invited devices.

202Apple Platform Security

Find My

Find My security
The Find My app for Apple devices is built on a foundation of advanced public key
cryptography.

Overview
The Find My app combines Find My iPhone and Find My Friends into a single app in iOS,
iPadOS, and macOS. Find My can help users locate a missing device, even an offline Mac.
An online device can simply report its location to the user via iCloud. Find My works offline
by sending out short range Bluetooth signals from the missing device that can be detected
by other Apple devices in use nearby. Those nearby devices then relay the detected
location of the missing device to iCloud so users can locate it in the Find My app—all while
protecting the privacy and security of all the users involved. Find My even works with a
Mac that is offline and asleep.

Using Bluetooth and the hundreds of millions of iOS, iPadOS, and macOS devices in active
use around the world, a user can locate their missing device even if it can’t connect to a
Wi-Fi or cellular network. Any iOS, iPadOS, or macOS device with “offline finding” enabled
in Find My settings can act as a “finder device.” This means the device can detect the
presence of another missing offline device using Bluetooth and then use its network
connection to report an approximate location back to the owner. When a device has offline
finding enabled, it also means that it can be located by other participants in the same way.
This entire interaction is end-to-end encrypted, anonymous, and designed to be battery
and data efficient. There is minimal impact on battery life and cellular data plan usage,
and user privacy is better protected.

Note: Find My may not be available in all countries or regions.

203Apple Platform Security

End-to-end encryption
Find My is built on a foundation of advanced public key cryptography. When offline finding
is enabled in Find My settings, an elliptic curve (EC) P-224 private encryption key pair
noted {d,P} is generated directly on the device where d is the private key and P is the
public key. Additionally, a 256-bit secret SK0 and a counter i is initialized to zero. This
private key pair and the secret are never sent to Apple and are synced only among the
user’s other devices in an end-to-end encrypted manner using iCloud Keychain.
The secret and the counter are used to derive the current symmetric key SKi with the
following recursive construction: SKi = KDF(SKi-1, “update”).

Based on the key SKi, two large integers ui and vi are computed with (ui,vi) = KDF(SKi,
“diversify”). Both the P-224 private key denoted d and corresponding public key referred
to as P are then derived using an affine relation involving the two integers to compute a
short-lived key pair: The derived private key is di, where di = ui * d + vi (modulo the order of
the P-224 curve) and the corresponding public part is Pi and verifies that Pi = ui*P + vi*G.

When a device goes missing and can’t connect to Wi-Fi or cellular—for example, a
MacBook Pro is left on a park bench—it begins periodically broadcasting the derived
public key Pi for a limited period of time in a Bluetooth payload. By using P-224, the public
key representation can fit into a single Bluetooth payload. The surrounding devices can
then help in the finding of the offline device by encrypting their location to the public
key. Approximately every 15 minutes, the public key is replaced by a new one using an
incremented value of the counter and the process above so that the user can’t be tracked
by a persistent identifier. The derivation mechanism is designed to prevent the various
public keys Pi from being linked to the same device.

Keeping users and devices anonymous
In addition to making sure that location information and other data are fully encrypted,
participants’ identities remain private from each other and from Apple. The traffic sent to
Apple by finder devices contains no authentication information in the contents or headers.
As a result, Apple doesn’t know who the finder is or whose device has been found. Further,
Apple doesn’t log information that would reveal the identity of the finder and retains no
information that would allow anyone to correlate the finder and owner. The device owner
receives only the encrypted location information that’s decrypted and displayed in the
Find My app with no indication as to who found the device.

204Apple Platform Security

Using Find My to locate missing Apple devices
Any Apple devices within Bluetooth range that have offline finding enabled can detect
a signal from another Apple device configured to allow Find My and read the current
broadcast key Pi. Using an ECIES construction and the public key Pi from the broadcast,
the finder devices encrypt their current location information and relay it to Apple.
The encrypted location is associated with a server index which is computed as the SHA256
hash of the P-224 public key Pi obtained from the Bluetooth payload. Apple never has the
decryption key, so Apple can’t read the location encrypted by the finder. The owner of the
missing device can reconstruct the index and decrypt the encrypted location.

When trying to locate the missing device, an expected range of counter values is estimated
for the location search period. With the knowledge of the original private P-224 key d and
secret values SKi in the range of counter values of the search period the owner can then
reconstruct the set of values {di, SHA256(Pi)} for the entire search period. The owner
device used to locate the missing device can then perform queries to the server using the
set of index values SHA256(Pi) and download the encrypted locations from the server.
The Find My app then locally decrypts the encrypted locations with the matching private
keys di and shows an approximate location of the missing device in the app. Location
reports from multiple finder devices are combined by the owner’s app to generate a more
precise location.

205Apple Platform Security

Locating devices that are offline
If a user has Find My iPhone enabled on their device, offline finding is enabled by default
when they upgrade a device to iOS 13 or later, iPadOS 13.1 or later, and macOS 10.15 or
later. This is designed to ensure that every user has the best possible chance to locate
their device if it goes missing. However, if at any time the user prefers not to participate,
they can disable offline finding in Find My settings on their device. When offline finding is
disabled, the device no longer acts as a finder nor is it detectable by other finder devices.
However, the user can still locate the device as long as it can connect to a Wi-Fi or cellular
network.

When a missing offline device is located, the user receives a notification and email
message to let them know the device has been found. To view the location of the missing
device, the user opens the Find My app and selects the Devices tab. Rather than showing
the device on a blank map as it would have prior to the device being located, Find My
shows a map location with an approximate address and information on how long ago
the device was detected. If more location reports come in, the current location and time
stamp both update automatically. Although users can’t play a sound on an offline device or
erase it remotely, they can use the location information to retrace their steps or take other
actions to help them recover it.

206Apple Platform Security

Continuity

Continuity security overview
Continuity takes advantage of technologies like iCloud, Bluetooth, and Wi-Fi to enable
users to continue an activity from one device to another, make and receive phone calls,
send and receive text messages, and share a cellular internet connection.

Handoff security
Apple handles handoffs securely, whether from one device to another, between a native
app and a website—even handoffs of large amounts of data.

How Handoff works securely
With Handoff, when a user’s iOS, iPadOS, and macOS devices are near each other, the user
can automatically pass whatever they’re working on from one device to the other.
Handoff lets the user switch devices and instantly continue working.

When a user signs in to iCloud on a second Handoff-capable device, the two devices
establish a Bluetooth Low Energy (BLE) 4.2 pairing out-of-band using APNs. The individual
messages are encrypted much like messages in iMessage are. After the devices are paired,
each device generates a symmetric 256-bit AES key that gets stored in the device’s
keychain. This key can encrypt and authenticate the BLE advertisements that communicate
the device’s current activity to other iCloud paired devices using AES256 in GCM mode,
with replay protection measures.

The first time a device receives an advertisement from a new key, it establishes a BLE
connection to the originating device and performs an advertisement encryption key
exchange. This connection is secured using standard BLE 4.2 encryption as well as
encryption of the individual messages, which is similar to how iMessage is encrypted.
In some situations, these messages are sent using APNs instead of BLE. The activity
payload is protected and transferred in the same way as an iMessage.

207Apple Platform Security

Handoff between native apps and websites
Handoff allows an iOS, iPadOS, or macOS native app to resume user activity on a webpage
in domains legitimately controlled by the app developer. It also allows the native app user
activity to be resumed in a web browser.

To help prevent native apps from claiming to resume websites not controlled by the
developer, the app must demonstrate legitimate control over the web domains it wants to
resume. Control over a website domain is established using the mechanism for shared web
credentials. For details, see App access to saved passwords. The system must validate an
app’s domain name control before the app is permitted to accept user activity Handoff.

The source of a webpage Handoff can be any browser that has adopted the Handoff APIs.
When the user views a webpage, the system advertises the domain name of the webpage
in the encrypted Handoff advertisement bytes. Only the user’s other devices can decrypt
the advertisement bytes.

On a receiving device, the system detects that an installed native app accepts Handoff
from the advertised domain name and displays that native app icon as the Handoff option.
When launched, the native app receives the full URL and the title of the webpage. No other
information is passed from the browser to the native app.

In the opposite direction, a native app may specify a fallback URL when a Handoff receiving
device doesn’t have the same native app installed. In this case, the system displays the
user’s default browser as the Handoff app option (if that browser has adopted Handoff
APIs). When Handoff is requested, the browser is launched and given the fallback URL
provided by the source app. There is no requirement that the fallback URL be limited to
domain names controlled by the native app developer.

Handoff of larger data
In addition to using the basic feature of Handoff, some apps may elect to use APIs that
support sending larger amounts of data over Apple-created peer-to-peer Wi-Fi technology
(much like AirDrop). For example, the Mail app uses these APIs to support handoff of a mail
draft, which may include large attachments.

When an app uses these API’s, the exchange between the two devices starts off just as in
Handoff. But, after receiving the initial payload using Bluetooth Low Energy (BLE),
the receiving device initiates a new connection over Wi-Fi. This connection is encrypted
(with TLS), and it derives trust through an identity shared through iCloud Keychain.
The identity in the certificates is verified against the user’s identity. Further payload data is
sent over this encrypted connection until the transfer is complete.

Universal Clipboard
Universal Clipboard leverages Handoff to securely transfer the content of a user’s
clipboard across devices so they can copy on one device and paste on another. Content is
protected in the same way as other Handoff data and is shared by default with Universal
Clipboard unless the app developer chooses to disallow sharing.

Apps have access to clipboard data regardless of whether the user has pasted the
clipboard into the app. With Universal Clipboard, this data access extends to apps on the
user’s other devices (as established by their iCloud sign-in).

208Apple Platform Security

iPhone cellular call relay security
When a user’s Mac, iPad, or HomePod is on the same Wi-Fi network as their iPhone,
it can make and receive phone calls using the cellular connection on iPhone. Configuration
requires the devices to be signed in to both iCloud and FaceTime using the same Apple ID
account.

When an incoming call arrives, all configured devices are notified using the Apple Push
Notification service (APNs), with each notification using the same end-to-end encryption
as iMessage. Devices that are on the same network present the incoming call notification
user interface. When the user answers the call, the audio is seamlessly transmitted from
the user’s iPhone using a secure peer-to-peer connection between the two devices.

When a call is answered on one device, ringing of nearby iCloud-paired devices is
terminated by briefly advertising using Bluetooth Low Energy (BLE). The advertising bytes
are encrypted using the same method as Handoff advertisements.

Outgoing calls are also relayed to iPhone using APNs, and audio is similarly transmitted
over the secure peer-to-peer link between devices. Users can disable phone call relay on a
device by turning off iPhone Cellular Calls in FaceTime settings.

iPhone Text Message Forwarding security
Text Message Forwarding automatically sends SMS text messages received on an iPhone to
a user’s enrolled iPad or Mac. Each device must be signed in to the iMessage service using
the same Apple ID account. When Text Message Forwarding is turned on, enrollment is
automatic on devices within a user’s circle of trust if two-factor authentication is enabled.
Otherwise, enrollment is verified on each device by entering a random six-digit numeric
code generated by iPhone.

After devices are linked, iPhone encrypts and forwards incoming SMS text messages to
each device, utilizing the methods described in iMessage security overview. Replies are
sent back to iPhone using the same method, and then iPhone sends the reply as a text
message using the carrier’s SMS transmission mechanism. Text Message Forwarding can
be turned on or off in Messages settings.

209Apple Platform Security

Instant Hotspot security
Instant Hotspot connects other Apple devices to a personal iPhone and iPad hotspot.
iPhone and iPad devices that support Instant Hotspot use Bluetooth Low Energy (BLE) to
discover and communicate to all devices that have signed in to the same individual iCloud
account or accounts used with Family Sharing (in iOS 13 and iPadOS). Compatible Mac
computers with OS X 10.10 or later use the same technology to discover and communicate
with Instant Hotspot iPhone and iPad devices.

Initially, when a user enters Wi-Fi settings on a device, it emits a BLE advertisement
containing an identifier that all devices signed in to the same iCloud account agree upon.
The identifier is generated from a DSID (Destination Signaling Identifier) that’s tied to the
iCloud account and rotated periodically. When other devices signed in to the same iCloud
account are in close proximity and support Personal Hotspot, they detect the signal and
respond, indicating the availability to use Instant Hotspot.

When a user who isn’t part of Family Sharing chooses an iPhone or iPad for Personal
Hotspot, a request to turn on Personal Hotspot is sent to that device. The request is sent
across a link that is encrypted using BLE encryption, and the request is encrypted in a
fashion similar to iMessage encryption. The device then responds across the same BLE link
using the same per-message encryption with Personal Hotspot connection information.

For users that are part of Family Sharing, Personal Hotspot connection information is
securely shared using a mechanism similar to that used by HomeKit devices to sync
information. Specifically, the connection that shares hotspot information between users is
secured with an ECDH (Curve25519) ephemeral key that is authenticated with the users’
respective device-specific Ed25519 public keys. The public keys used are those that had
previously synced between the members of Family Sharing using IDS when the Family
Share was established.

210Apple Platform Security

Network security

Network security overview
In addition to the built-in safeguards Apple uses to protect data stored on Apple devices,
there are many measures organizations can take to keep information secure as it travels to
and from a device. All of these safeguards and measures fall under network security.

Because users must be able to access corporate networks from anywhere in the world,
it’s important to help ensure that they are authorized and that their data is protected
during transmission. To accomplish these security objectives, iOS, iPadOS, and macOS
integrate proven technologies and the latest standards for both Wi-Fi and cellular data
network connections. That’s why our operating systems use—and provide developer
access to—standard networking protocols for authenticated, authorized, and encrypted
communications.

TLS security
iOS, iPadOS, and macOS support Transport Layer Security (TLS 1.0, TLS 1.1, TLS 1.2,
TLS 1.3) and Datagram Transport Layer Security (DTLS). The TLS protocol supports
both AES128 and AES256, and prefers cipher suites with forward secrecy. Internet apps
such as Safari, Calendar, and Mail automatically use this protocol to enable an encrypted
communication channel between the device and network services. High-level APIs (such
as CFNetwork) make it easy for developers to adopt TLS in their apps, while low-level APIs
(such as Network.framework) provide fine-grained control. CFNetwork disallows SSL 3, and
apps that use WebKit (such as Safari) are prohibited from making an SSL 3 connection.

In iOS 11 or later and macOS 10.13 or later, SHA-1 certificates are no longer allowed for
TLS connections unless trusted by the user. Certificates with RSA keys shorter than
2048 bits are also disallowed. The RC4 symmetric cipher suite is deprecated in iOS 10
and macOS 10.12. By default, TLS clients or servers implemented with SecureTransport
APIs don’t have RC4 cipher suites enabled and are unable to connect when RC4 is
the only cipher suite available. To be more secure, services or apps that require RC4
should be upgraded to use secure cipher suites. In iOS 12.1, certificates issued after
October 15, 2018, from a system-trusted root certificate must be logged in a trusted
Certificate Transparency log to be allowed for TLS connections. In iOS 12.2, TLS 1.3 is
enabled by default for Network.framework and NSURLSession APIs. TLS clients using the
SecureTransport APIs can’t use TLS 1.3.

211Apple Platform Security

App Transport Security
App Transport Security provides default connection requirements so that apps adhere
to best practices for secure connections when using NSURLConnection, CFURL, or
NSURLSession APIs. By default, App Transport Security limits cipher selection to include
only suites that provide forward secrecy, specifically:

•	 ECDHE_ECDSA_AES and ECDHE_RSA_AES in Galois/Counter Mode (GCM)

•	 Cipher Block Chaining (CBC) mode

Apps are able to disable the forward secrecy requirement per domain, in which case RSA_
AES is added to the set of available ciphers.

Servers must support TLS 1.2 and forward secrecy, and certificates must be valid and
signed using SHA256 or stronger with a minimum 2048-bit RSA key or 256-bit elliptic
curve key.

Network connections that don’t meet these requirements will fail unless the app
overrides App Transport Security. Invalid certificates always result in a hard failure and no
connection. App Transport Security is automatically applied to apps that are compiled for
iOS 9 or later and macOS 10.11 or later.

Certificate validity checking

Evaluating the trusted status of a TLS certificate is performed in accordance with
established industry standards, as set out in RFC 5280, and incorporates emerging
standards such as RFC 6962 (Certificate Transparency). In iOS 11 or later and macOS 10.13
or later, Apple devices are periodically updated with a current list of revoked and
constrained certificates. The list is aggregated from certificate revocation lists (CRLs),
which are published by each of the built-in root certificate authorities trusted by Apple,
as well as by their subordinate CA issuers. The list may also include other constraints
at Apple’s discretion. This information is consulted whenever a network API function is
used to make a secure connection. If there are too many revoked certificates from a CA
to list individually, a trust evaluation may instead require that an online certificate status
response (OCSP) is needed, and if the response isn’t available, the trust evaluation will fail.

https://www.ietf.org/rfc/rfc5280.txt
https://www.ietf.org/rfc/rfc6962.txt

212Apple Platform Security

IPv6 security
All Apple operating systems support IPv6, implementing several mechanisms to protect
the privacy of users and the stability of the networking stack. When Stateless Address
Autoconfiguration (SLAAC) is used, the IPv6 addresses of all interfaces are generated in a
way that helps prevent tracking devices across networks and at the same time allows for a
good user experience by ensuring address stability when no network changes take place.
The address generation algorithm is based on cryptographically generated addresses as
of RFC 3972, enhanced by an interface-specific modifier to warrant that even different
interfaces on the same network eventually have different addresses. Furthermore,
temporary addresses are created with a preferred lifetime of 24 hours, and these are
used by default for any new connections. Aligned with the Private Wi-Fi address feature
introduced in iOS 14, iPadOS 14, and watchOS 7, a unique link-local address is generated
for every Wi-Fi network that a device joins. The network’s SSID is incorporated as an
additional element for the address generation, similar to the Network_ID parameter as of
RFC 7217. This approach is used in iOS 14, iPadOS 14, and watchOS 7.

To protect against attacks based on IPv6 extension headers and fragmentation, Apple
devices implement protection measures specified in RFC 6980, RFC 7112, and RFC 8021.
Among other measures, these inhibit attacks where the upper-layer header can be found
only in the second fragment (as shown below), which in turn could cause ambiguities for
security controls like stateless packet filters.

In addition, to help ensure the reliability of the IPv6 stack of Apple operating systems,
Apple devices enforce various limits on IPv6-related data structures, such as the number
of prefixes per interface.

https://www.ietf.org/rfc/rfc3972.txt
https://www.ietf.org/rfc/rfc7217.txt
https://www.ietf.org/rfc/rfc6980.txt
https://www.ietf.org/rfc/rfc7112.txt
https://www.ietf.org/rfc/rfc8021.txt

213Apple Platform Security

Virtual private network (VPN) security
Secure network services such as virtual private networking (VPN) typically require minimal
setup and configuration to work with iPhone, iPad, and Mac devices.

Protocols supported
These devices work with VPN servers that support the following protocols and
authentication methods:

•	 IKEv2/IPsec with authentication by shared secret, RSA Certificates, Elliptic Curve Digital
Signature Algorithm (ECDSA) Certificates, EAP-MSCHAPv2, or EAP-TLS

•	 SSL-VPN using the appropriate client app from the App Store

•	 L2TP/IPsec with user authentication by MS-CHAPV2 password and machine
authentication by shared secret (iOS, iPadOS, and macOS) and RSA SecurID or
CRYPTOCard (macOS only)

•	 Cisco IPsec with user authentication by password, RSA SecurID or CRYPTOCard,
and machine authentication by shared secret and certificates (macOS only)

VPN deployments supported
iOS, iPadOS, and macOS support the following:

•	 VPN On Demand: For networks that use certificate-based authentication. IT policies
specify which domains require a VPN connection by using a VPN configuration profile.

•	 Per App VPN: For facilitating VPN connections on a much more granular basis. Mobile
device management (MDM) solutions can specify a connection for each managed app
and specific domains in Safari. This helps ensure that secure data always goes to and
from the corporate network—and that a user’s personal data doesn’t.

iOS and iPadOS support the following:

•	 Always On VPN: For devices managed through an MDM solution and supervised
using Apple Configurator for Mac, Apple School Manager, Apple Business Manager,
or Apple Business Essentials. Always On VPN eliminates the need for users to turn
on VPN to enable protection when connecting to cellular and Wi-Fi networks. It also
gives an organization full control over device traffic by tunneling all IP traffic back to
the organization. The default exchange of parameters and keys for the subsequent
encryption, IKEv2, secures traffic transmission with data encryption. The organization
can monitor and filter traffic to and from its devices, secure data within its network,
and restrict device access to the internet.

214Apple Platform Security

Wi-Fi security

Secure access to wireless networks
All Apple platforms support industry-standard Wi-Fi authentication and encryption
protocols, to provide authenticated access and confidentiality when connecting to the
following secure wireless networks:

•	 WPA2 Personal

•	 WPA2 Enterprise

•	 WPA2/WPA3 Transitional

•	 WPA3 Personal

•	 WPA3 Enterprise

•	 WPA3 Enterprise 192-bit security

WPA2 and WPA3 authenticate each connection and provide 128-bit AES encryption to
help ensure confidentiality of data sent over the air. This grants users the highest level
of assurance that their data remains protected when they’re sending and receiving
communications over a Wi-Fi network connection.

WPA3 support
WPA3 is supported on the following Apple devices:

•	 iPhone 7 or later

•	 iPad 5th generation or later

•	 Apple TV 4K or later

•	 Apple Watch series 3 or later

•	 Mac computers (late 2013 or later, with 802.11ac or later)

Newer devices support authentication with WPA3 Enterprise 192-bit security, which
includes support for 256-bit AES encryption when connecting to compatible wireless
access points (APs). This encryption provides even stronger confidentiality protections
for traffic sent over the air. WPA3 Enterprise 192-bit security is supported in all iPhone 11
models or later, all iPad models starting with the iPad 7th generation, and all Mac
computers with Apple silicon.

215Apple Platform Security

PMF support
In addition to protecting data sent over the air, Apple platforms extend WPA2 and WPA3
level protections to unicast and multicast management frames through the Protected
Management Frame (PMF) service defined in 802.11w. PMF support is available on the
following Apple devices:

•	 iPhone 6 or later

•	 iPad Air 2 or later

•	 Apple TV HD or later

•	 Apple Watch series 3 or later

•	 Mac computers (late 2013 or later, with 802.11ac or later)

With support for 802.1X, Apple devices can be integrated into a broad range of RADIUS
authentication environments. 802.1X wireless authentication methods supported include
EAP-TLS, EAP-TTLS, EAP-FAST, EAP-SIM, PEAPv0, and PEAPv1.

Platform protections
Apple operating systems protect the device from vulnerabilities in network processor
firmware. This means that network controllers with Wi-Fi have limited access to Application
Processor memory.

•	 When USB or SDIO (Secure Digital Input Output) is used to interface with the
network processor, the network processor can’t initiate direct memory access (DMA)
transactions to the Application Processor.

•	 When PCIe is used, each network processor is on its own isolated PCIe bus. An Input/
Output Memory Management Unit (IOMMU) on each PCIe bus further limits the network
processor’s DMA access to only memory and resources containing its network packets
and control structures.

Deprecated protocols
Apple products support the following deprecated Wi-Fi authentication and encryption
protocols:

•	 WEP Open, with both 40-bit and 104-bit keys

•	 WEP Shared, with both 40-bit and 104-bit keys

•	 Dynamic WEP

•	 Temporal Key Integrity Protocol (TKIP)

•	 WPA

•	 WPA/WPA2 Transitional

These protocols are no longer considered secure, and their use is strongly discouraged
for compatibility, reliability, performance, and security reasons. They are supported for
backward compatibility purposes only and may be removed in future software versions.

It’s recommended that all Wi-Fi implementations be migrated to WPA3 Personal or WPA3
Enterprise, to provide the most robust, secure, and compatible Wi-Fi connections possible.

216Apple Platform Security

Wi-Fi privacy

MAC address randomization
Apple platforms use a randomized media access control address (MAC address) when
performing Wi-Fi scans when not associated with a Wi-Fi network. These scans can be
performed to find and connect to a known Wi-Fi network or to assist Location Services for
apps that use geofences, such as location-based reminders or fixing a location in Apple
Maps. Note that Wi-Fi scans that happen while trying to connect to a preferred Wi-Fi
network aren’t randomized. Wi-Fi MAC address randomization support is available on
iPhone 5 or later.

Apple platforms also use a randomized MAC address when conducting enhanced Preferred
Network Offload (ePNO) scans when a device isn’t associated with a Wi-Fi network or its
processor is asleep. ePNO scans are run when a device uses Location Services for apps
that use geofences, such as location-based reminders that determine whether the device
is near a specific location.

Because a device’s MAC address changes when disconnected from a Wi-Fi network,
it can’t be used to persistently track a device by passive observers of Wi-Fi traffic,
even when the device is connected to a cellular network. Apple has informed Wi-Fi
manufacturers that iOS and iPadOS Wi-Fi scans use a randomized MAC address and that
neither Apple nor manufacturers can predict these randomized MAC addresses.

In iOS 14 or later, iPadOS 14 or later, and watchOS 7 or later, when an iPhone, iPad,
or Apple Watch connects to a Wi-Fi network, it identifies itself with a unique (random) MAC
address per network. This feature can be disabled either by the user or using a new option
in the Wi-Fi payload. Under certain circumstances, the device will fall back to the actual
MAC address.

For more information, see the Apple Support article Use private Wi-Fi addresses on iPhone,
iPad, and Apple Watch.

https://support.apple.com/102509
https://support.apple.com/102509

217Apple Platform Security

Wi-Fi frame sequence number randomization
Wi-Fi frames include a sequence number, which is used by the low-level 802.11 protocol
to enable efficient and reliable Wi-Fi communications. Because these sequence numbers
increment on each transmitted frame, they could be used to correlate information
transmitted during Wi-Fi scans with other frames transmitted by the same device.

To guard against this, Apple devices randomize the sequence numbers whenever a MAC
address is changed to a new randomized address. This includes randomizing the sequence
numbers for each new scan request that’s initiated while the device is unassociated.
This randomization is supported on the following devices:

•	 iPhone 7 or later

•	 iPad 5th generation or later

•	 Apple TV 4K or later

•	 Apple Watch series 3 or later

•	 iMac Pro (Retina 5K, 27-inch, 2017) or later

•	 MacBook Pro (13-inch, 2018) or later

•	 MacBook Pro (15-inch, 2018) or later

•	 MacBook Air (Retina, 13-inch, 2018) or later

•	 Mac mini (2018) or later

•	 iMac (Retina 4K, 21.5-inch, 2019) or later

•	 iMac (Retina 5K, 27-inch, 2019) or later

•	 Mac Pro (2019) or later

Wi-Fi connections
Apple generates randomized MAC addresses for the Peer-to-Peer Wi-Fi connections
that are used for AirDrop and AirPlay. Randomized addresses are also used for Personal
Hotspot in iOS and iPadOS (with a SIM card) and Internet Sharing in macOS.

New random addresses are generated whenever these network interfaces are started,
and unique addresses are independently generated for each interface as needed.

Hidden networks
Wi-Fi networks are identified by their network name, known as a service set identifier
(SSID). Some Wi-Fi networks are configured to hide their SSID, which results in the wireless
access point not broadcasting the network’s name. These are known as hidden networks.
iPhone 6s and later devices automatically detect when a network is hidden. If a network is
hidden, the iOS or iPadOS device sends a probe with the SSID included in the request—not
otherwise. This helps prevent the device from broadcasting the name of previously hidden
networks a user was connected to, thereby further ensuring privacy.

218Apple Platform Security

Bluetooth security
There are two types of Bluetooth in Apple devices, Bluetooth Classic and Bluetooth Low
Energy (BLE). The Bluetooth security model for both versions includes the following
distinct security features:

•	 Pairing: The process for creating one or more shared secret keys

•	 Bonding: The act of storing the keys created during pairing for use in subsequent
connections to form a trusted device pair

•	 Authentication: Verifying that the two devices have the same keys

•	 Encryption: Message confidentiality

•	 Message integrity: Protection against message forgeries

•	 Secure Simple Pairing: Protection against passive eavesdropping and protection against
man-in-the-middle attacks

Bluetooth version 4.1 added the Secure Connections feature to Bluetooth Classic (BR/EDR)
physical transport.

The security features for each type of Bluetooth are listed below.

Support Bluetooth Classic Bluetooth Low Energy

Pairing P-256 elliptic curve FIPS-approved algorithms (AES-
CMAC and P-256 elliptic curve)

Bonding Pairing information stored in a
secure location in iOS, iPadOS,
macOS, tvOS, and watchOS devices

Pairing information stored in a
secure location in iOS, iPadOS,
macOS, tvOS, and watchOS devices

Authentication FIPS-approved algorithms (HMAC-
SHA256 and AES-CTR)

FIPS-approved algorithms

Encryption AES-CCM cryptography, performed
in the Controller

AES-CCM cryptography, performed
in the Controller

Message integrity AES-CCM, used for message
integrity

AES-CCM, used for message
integrity

Secure Simple Pairing: Protection
against passive eavesdropping

Elliptic Curve Diffie-Hellman
Exchange Ephemeral (ECDHE)

Elliptic Curve Diffie-Hellman
Exchange (ECDHE)

Secure Simple Pairing: Protection
against man-in-the-middle (MITM)
attacks

Two user-assisted numeric
methods: numerical comparison or
passkey entry

Two user-assisted numeric
methods: numerical comparison or
passkey entry

Pairings require a user response,
including all non-MITM pairing
modes

Bluetooth 4.1 or later iMac Late 2015 or later

MacBook Pro Early 2015 or later

iOS 9 or later

iPadOS 13.1 or later

macOS 10.12 or later

tvOS 9 or later

watchOS 2.0 or later

219Apple Platform Security

Support Bluetooth Classic Bluetooth Low Energy

Bluetooth 4.2 or later iPhone 6 or later iOS 9 or later

iPadOS 13.1 or later

macOS 10.12 or later

tvOS 9 or later

watchOS 2.0 or later

Bluetooth Low Energy privacy
To help secure user privacy, BLE includes the following two features: address
randomization and cross-transport key derivation.

Address randomization is a feature that reduces the ability to track a BLE device over a
period of time by changing the Bluetooth device address on a frequent basis. For a device
using the privacy feature to reconnect to known devices, the device address,
referred to as the private address, must be resolvable by the other device. The private
address is generated using the device’s identity resolving key exchanged during the pairing
procedure.

iOS 13 or later and iPadOS 13.1 or later have the ability to derive link keys across
transports, a feature known as cross-transport key derivation. For example, a link key
generated with BLE can be used to derive a Bluetooth Classic link key. In addition,
Apple added Bluetooth Classic to BLE support for devices that support the Secured
Connections feature that was introduced in the Bluetooth Core Specification 4.1 (see the
Bluetooth Core Specification 5.1).

https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/

220Apple Platform Security

Ultra Wideband security in iOS
The new Apple‑designed U1 chip uses Ultra Wideband technology for spatial awareness—
allowing iPhone 11, iPhone 11 Pro, and iPhone 11 Pro Max or later iPhone models to
precisely locate other U1‑equipped Apple devices. Ultra Wideband technology uses the
same technology to randomize data found in other supported Apple devices:

•	 MAC address randomization

•	 Wi-Fi frame sequence number randomization

Single sign-on

Single sign-on security

Single sign-on
iOS and iPadOS support authentication to enterprise networks through Single sign-on
(SSO). SSO works with Kerberos-based networks to authenticate users to services they
are authorized to access. SSO can be used for a range of network activities, from secure
Safari sessions to third-party apps. Certificate-based authentication such as PKINIT is also
supported.

macOS supports authentication to enterprise networks using Kerberos. Apps can use
Kerberos to authenticate users to services they’re authorized to access. Kerberos can also
be used for a range of network activities, from secure Safari sessions and network file
system authentication to third-party apps. Certificate-based authentication is supported,
although app adoption of a developer API is required.

iOS, iPadOS, and macOS SSO use SPNEGO tokens and the HTTP Negotiate protocol to
work with Kerberos-based authentication gateways and Windows Integrated Authentication
systems that support Kerberos tickets. SSO support is based on the open source Heimdal
project.

The following encryption types are supported in iOS, iPadOS, and macOS:

•	 AES-128-CTS-HMAC-SHA1-96

•	 AES-256-CTS-HMAC-SHA1-96

•	 DES3-CBC-SHA1

•	 ARCFOUR-HMAC-MD5

Safari supports SSO, and third-party apps that use standard iOS and iPadOS networking
APIs can also be configured to use it. To configure SSO, iOS and iPadOS support a
configuration profile payload that allows mobile device management (MDM) solutions to
push down the necessary settings. This includes setting the user principal name (that is,
the Active Directory user account) and Kerberos realm settings, as well as configuring
which apps and Safari web URLs should be allowed to use SSO.

221Apple Platform Security

Extensible single sign-on
App developers can provide their own single sign-on implementations using SSO
extensions. SSO extensions are invoked when a native or web app needs to use some
identity provider for user authentication. Developers can provide two types of extensions:
those that redirect to HTTPS and those that use a challenge/response mechanism such
as Kerberos. This allows OpenID, OAuth, SAML2 and Kerberos authentication schemes
to be supported by extensible single sign-on. SSO extensions may also support macOS
authentication by adopting a native SSO protocol, which allows to retrieve SSO tokens
during macOS login.

To use a single sign-on extension, an app can either use the AuthenticationServices API or
can rely on the URL interception mechanism offered by the operating system. WebKit and
CFNetwork provide an interception layer that permits seamless support of single sign-on
for any native or WebKit app. For a single sign-on extension to be invoked, a configuration
provided by an administrator has to be installed though a mobile device management
(MDM) profile. In addition, redirect type extensions must use the Associated Domains
payload to prove that the identity server they support is aware of their existence.

The only extension provided with the operating system is the Kerberos SSO extension.

222Apple Platform Security

AirDrop security
Apple devices that support AirDrop use Bluetooth Low Energy (BLE) and Apple-created
peer-to-peer Wi-Fi technology to send files and information to nearby devices, including
AirDrop-capable iOS devices and iPad devices running iOS 7 or later and Mac computers
running OS X 10.11 or later. The Wi-Fi radio is used to communicate directly between
devices without using any internet connection or wireless access point (AP).
This connection is encrypted with TLS.

AirDrop is set to share with Contacts Only by default. Users can also choose to use AirDrop
to share with everyone, or turn off the feature entirely. Organizations can restrict the use of
AirDrop for devices or apps being managed by using a mobile device management (MDM)
solution.

AirDrop operation
AirDrop uses iCloud services to help users authenticate. When a user signs in to iCloud,
a 2048-bit RSA identity is stored on the device, and when the user turns on AirDrop,
an AirDrop short identity hash is created based on the email addresses and phone numbers
associated with the user’s Apple ID.

When a user chooses AirDrop as the method for sharing an item, the sending device emits
an AirDrop signal over BLE that includes the user’s AirDrop short identity hash. Other
Apple devices that are awake, in close proximity, and have AirDrop turned on, detect the
signal and respond using peer-to-peer Wi-Fi, so that the sending device can discover the
identity of any responding devices.

In Contacts Only mode, the received AirDrop short identity hash is compared with hashes
of people in the receiving device’s Contacts app. If a match is found, the receiving device
responds over peer-to-peer Wi-Fi with its identity information. If there is no match,
the device doesn’t respond.

In Everyone mode, the same overall process is used. However, the receiving device
responds even if there is no match in the device’s Contacts app.

The sending device then initiates an AirDrop connection using peer-to-peer Wi-Fi, using
this connection to send a long identity hash to the receiving device. If the long identity
hash matches the hash of a known person in the receiver’s Contacts, then the receiver
responds with its long identity hashes.

If the hashes are verified, the recipient’s first name and photo (if present in Contacts) are
displayed in the sender’s AirDrop share sheet. In iOS and iPadOS, they are shown in the
“People” or “Devices” section. Devices that aren’t verified or authenticated are displayed in
the sender’s AirDrop share sheet with a silhouette icon and the device’s name, as defined
in Settings > General > About > Name. In iOS and iPadOS, they are placed in the “Other
People” section of the AirDrop share sheet.

The sending user may then select whom they want to share with. Upon user selection,
the sending device initiates an encrypted (TLS) connection with the receiving device,
which exchanges their iCloud identity certificates. The identity in the certificates is verified
against each user’s Contacts app.

If the certificates are verified, the receiving user is asked to accept the incoming transfer
from the identified user or device. If multiple recipients have been selected, this process is
repeated for each destination.

223Apple Platform Security

Wi-Fi password sharing security on iPhone and
iPad
iPhone and iPad devices that support Wi-Fi password sharing use a mechanism similar to
AirDrop to send a Wi-Fi password from one device to another.

When a user selects a Wi-Fi network (requestor) and is prompted for the Wi-Fi password,
the Apple device starts a Bluetooth Low Energy (BLE) advertisement indicating that it
wants the Wi-Fi password. Other Apple devices that are awake, in close proximity, and have
the password for the selected Wi-Fi network connect using BLE to the requesting device.

The device that has the Wi-Fi password (grantor) requires the Contact information of
the requestor, and the requestor must prove their identity using a similar mechanism to
AirDrop. After identity is proven, the grantor sends the requestor the passcode which can
be used to join the network.

Organizations can restrict the use of Wi-Fi password sharing for devices or apps being
managed through a mobile device management (MDM) solution.

Firewall security in macOS
macOS includes a built-in firewall to protect the Mac from network access and denial-of-
service attacks. It can be configured by going to System Settings > Privacy & Security
(macOS 13 or later), the Security & Privacy pane of System Preferences (macOS 12 or
earlier), or by using a configuration profile with the Firewall payload installed manually or
provided by an MDM solution. The following configurations are supported:

•	 Block all incoming connections, regardless of app.

•	 Automatically allow built-in software to receive incoming connections.

•	 Automatically allow downloaded and signed software to receive incoming connections.

•	 Add or deny access based on user-specified apps.

•	 Prevent the Mac from responding to ICMP (Internet Control Message Protocol) probing
and portscan requests.

224Apple Platform Security

Developer kit security

Developer kit security overview
Apple provides a number of “kit” frameworks to enable third-party developers to extend
Apple services. These frameworks are built with user privacy and security at their core:

•	 HomeKit

•	 CloudKit

•	 SiriKit

•	 WidgetKit

•	 DriverKit

•	 ReplayKit

•	 ARKit

HomeKit security

HomeKit communication security
HomeKit provides a home automation infrastructure that uses iCloud and device security
features to protect and sync private data without exposing it to Apple.

HomeKit identity and security are based on Ed25519 public-private key pairs. An Ed25519
key pair is generated on the user’s device, which becomes their HomeKit identity.
The key pair is used as part of the HomeKit Accessory Protocol (HAP) to authenticate
direct communication between user’s Apple devices and their HomeKit accessories.

For homes where there is a home hub, members of the shared home can send commands
to accessories through this home hub. These commands are sent, end-to-end encrypted
and authenticated, from the user’s device to the home hub using Apple Identity Service
(IDS), where they are forwarded on to the relevant accessory using the HomeKit Accessory
Protocol (HAP) or Matter, a smart home connectivity standard.

The keys—stored in keychain and are included only in encrypted keychain backups—are
kept up to date between devices using iCloud Keychain.

225Apple Platform Security

Communication between HomeKit accessories
HomeKit accessories generate their own Ed25519 key pair for use in communicating with
Apple devices. If the accessory is restored to factory settings, a new key pair is generated.

To establish a relationship between an Apple device and a HomeKit accessory, keys are
exchanged using the Secure Remote Password (3072-bit) protocol with an eight-digit
code provided by the accessory’s manufacturer, entered on the user’s device, and then
encrypted using ChaCha20-Poly1305 AEAD with HKDF-SHA512 derived keys.
The accessory’s MFi certification is also verified during setup. Accessories without an MFi
chip can build in support for software authentication in iOS 11.3 or later.

When the device and the HomeKit accessory communicate during use, each authenticates
the other using the keys exchanged in the above process. Each session is established
using the Station-to-Station protocol and is encrypted with HKDF-SHA512 derived keys
based on per-session Curve25519 keys. This applies to both IP-based and Bluetooth Low
Energy (BLE) accessories.

For BLE devices that support broadcast notifications, the accessory is provisioned with
a broadcast encryption key by a paired device over a secure session. This key is used to
encrypt the data about state changes on the accessory, which are notified using the BLE
advertisements. The broadcast encryption key is an HKDF-SHA512 derived key,
and the data is encrypted using the ChaCha20-Poly1305 AEAD algorithm. The broadcast
encryption key is periodically changed and updated on other devices using iCloud,
as described in Data security.

Communication with Matter accessories
Identity and security with Matter accessories are certificate based. For Apple homes,
the root of trust Certificate Authority (CA) is generated on the initial user’s device (the
“owner”), and the private key for the CA is stored in their iCloud Keychain. Each Apple
device in the home generates a Certificate Signing Request (CSR) using NIST P256.
This CSR is ingested by the owner’s device, which creates a Matter identity certificate for
the device using their CA private key. This certificate is subsequently used to authenticate
communication between users’ devices and their accessories.

Matter accessories generate their own NIST P256 key pair and CSR and receive a
certificate from the CA during accessory pairing. Before the key pairs are generated, the
Matter accessory and the home owner’s devices exchange keys—using the SPAKE2+
protocol with a PIN provided by the accessory’s manufacturer—and a Device Attestation
process is performed. The CSR and certificate are then exchanged over this channel
encrypted using AES-CCM with HKDF-SHA256 derived keys. If the accessory is restored to
factory settings, a new key pair and CSR are generated and a new certificate is issued for
the accessory during pairing.

When an Apple device and the Matter accessory communicate during use, each
authenticates the other using their own certificates. Each session is established using a
three-phase (sigma) protocol and is encrypted with HKDF-SHA256 derived keys based on
per-session P256 keys.

For more information about how Apple devices interact securely with Matter accessories,
see Matter support in iOS 16 on the Apple Developer website.

https://developer.apple.com/apple-home/matter/

226Apple Platform Security

HomeKit and Siri
Siri can be used to query and control accessories, and to activate scenes. Minimal
information about the configuration of the home is provided anonymously to Siri, to provide
names of rooms, accessories, and scenes that are necessary for command recognition.
Audio sent to Siri may denote specific accessories or commands, but such Siri data isn’t
associated with other Apple features such as HomeKit.

Siri-enabled HomeKit accessories
Users can enable new features like Siri, and other HomePod features like timers, alarms,
intercom, and doorbell, on Siri-enabled accessories using the Home app. When these
features are enabled, the accessory coordinates with a paired HomePod on the local
network that hosts these Apple features. Audio is exchanged between the devices over
encrypted channels using both HomeKit and AirPlay protocols.

When Listen for Hey Siri is turned on, the accessory listens for the “Hey Siri” phrase using
a locally running trigger-phrase detection engine. If this engine detects the phrase,
it sends the audio frames directly to a paired HomePod using HomeKit. The HomePod
does a second check on the audio and may cancel the audio session if the phrase doesn’t
appear to contain the trigger phrase.

When Touch for Siri is turned on, the user can press a dedicated button on the accessory
to start a conversation with Siri. The audio frames are sent directly to the paired HomePod.

After a successful invocation of Siri is detected, the HomePod sends the audio to Siri
servers and fulfills the user’s intent using the same security, privacy, and encryption
safeguards that the HomePod applies to user invocations made to the HomePod itself.
If Siri has an audio reply, then Siri’s response is sent over an AirPlay audio channel to the
accessory. Some Siri requests require additional information from the user (for example,
asking if the user wants to hear more options). In that case, the accessory receives an
indication that the user should be prompted, and the additional audio is streamed to the
HomePod.

The accessory is required to have a visual indicator to signal to a user when it’s actively
listening (for example, an LED indicator). The accessory has no knowledge of the intent of
the Siri request, except for access to the audio streams, and no user data is stored on the
accessory.

HomeKit data security
For homes that have been upgraded to the new HomeKit architecture (available in iOS 16.2
and iPadOS 16.2), HomeKit data is securely synchronized between a user’s Apple devices
using iCloud and iCloud Keychain. During this process, the HomeKit data is encrypted
using iCloud end-to-end encryption and isn’t accessible by Apple.

The user who initially created the home in HomeKit (the “owner”) or another user with
editing permissions can add new users. The owner’s device configures the accessories
with the public key of the new user so that the accessory can authenticate and accept
commands from the new user. When a user with editing permissions adds a new user,
the process is delegated to a home hub to complete the operation.

227Apple Platform Security

Home data and apps
Access to home data by apps is controlled by users in Privacy settings. Users are asked
to grant access when apps request home data, similar to how to access Contacts, Photos,
and other iOS, iPadOS, and macOS data sources works. If the user approves, apps have
access to the names of rooms, names of accessories, the room each accessory is in,
and other information as detailed in the HomeKit developer documentation at
https://developer.apple.com/homekit/.

Local data storage
HomeKit stores data about the homes, accessories, scenes, and users on a user’s Apple
devices. This data is stored using the Data Protection class Protected Until First User
Authentication and within a data vault. HomeKit data isn’t backed up in local backups.

Securing routers with HomeKit
Users can improve the security of their home network by using routers that support
HomeKit. With these routers, users can manage the Wi-Fi access that HomeKit accessories
have to their local network and to the internet. The routers also support Private PSK
(PPSK) authentication, so accessories can be added to the Wi-Fi network using a key that’s
specific to the accessory and that can be revoked when needed. PPSK authentication
improves security by not exposing the main Wi-Fi password to accessories, as well as by
allowing the router to securely identify an accessory even if it changes its MAC address.

Using the Home app, a user can configure access restrictions for groups of accessories as
follows:

•	 No restriction: Allow unrestricted access to the internet and the local network.

•	 Automatic: This is the default setting. Allow access to the internet and the local network
based on a list of internet sites and local ports provided to Apple by the accessory
manufacturer. This list includes all sites and ports needed by the accessory to function
properly. (No Restriction is in place until such a list is available.)

•	 Restrict to Home: No access to the internet or the local network except for the
connections required by HomeKit to discover and control the accessory from the local
network (including from the home hub to support remote control).

A PPSK is a strong, accessory-specific WPA2 Personal pass-phrase that is automatically
generated by HomeKit and revoked if and when the accessory is later removed from the
Home. A PPSK is used when an accessory is added to the Wi-Fi network by HomeKit
in a Home that has been configured with a HomeKit router; this addition is reflected
as Wi-Fi Credential: HomeKit-managed on the settings screen for the accessory in the
Home app. Accessories that were added to the Wi-Fi network before adding the router
are reconfigured to use a PPSK if the accessory supports this; otherwise, they retain their
existing credentials.

As an additional security measure, users must configure the HomeKit router using the
router manufacturer’s app, so that the app can validate that users have access to the
router and can add it to the Home app.

228Apple Platform Security

HomeKit camera security
Cameras that have an Internet Protocol address (IP address) in HomeKit send video and
audio streams directly to the iOS, iPadOS, tvOS, and macOS device on the local network
accessing the stream. The streams are encrypted using randomly generated keys on the
device and an Internet Protocol camera (or IP camera), and they’re exchanged over the
secure HomeKit session to the camera. When a device isn’t on the local network, the
encrypted streams are relayed through the home hub to the device. The home hub doesn’t
decrypt the streams; it functions only as a relay between the device and the IP camera.
When an app displays the HomeKit IP camera video view to the user, HomeKit renders the
video frames securely from a separate system process. As a result, the app is unable to
access or store the video stream. In addition, apps aren’t permitted to capture screenshots
from this stream.

HomeKit secure video
HomeKit provides an end-to-end secure and private mechanism to record, analyze, and
view clips from HomeKit IP cameras without exposing that video content to Apple or any
third party. When motion is detected by the IP camera, video clips are sent directly to an
Apple device acting as a home hub, using a dedicated local network connection between
that home hub and the IP camera. The local network connection is encrypted with a
per-session HKDF-SHA512 derived key-pair that is negotiated over the HomeKit session
between home hub and IP camera. HomeKit decrypts the audio and video streams on the
home hub and analyzes the video frames locally for any significant event. If a significant
event is detected, HomeKit encrypts the video clip using AES-256-GCM with a randomly
generated AES256 key. HomeKit also generates poster frames for each clip and these
poster frames are encrypted using the same AES256 key. The encrypted poster frame and
audio and video data are uploaded to iCloud servers. The related metadata for each clip
including the encryption key are uploaded to CloudKit using iCloud end-to-end encryption.

For face classification, HomeKit stores all data used to classify a particular person’s face in
CloudKit using iCloud end-to-end encryption. The data stored includes information about
each person, such as name, as well as images representing that person’s face. These face
images can be sourced from a user’s Photos if they opt in, or they can be collected from
previously analyzed IP camera video. A HomeKit Secure Video analysis session uses this
classification data to identify faces in the secure video stream it receives directly from
the IP camera and includes that identification information in the clip metadata mentioned
previously.

When the Home app is used to view the clips for a camera, the data is downloaded from
iCloud and the keys to decrypt the streams are unwrapped locally using iCloud end-to-
end decryption. The encrypted video content is streamed from the servers and decrypted
locally on the iOS device before displaying it in the viewer. Each video clip session maybe
broken down into sub-sections with each sub-section encrypting the content stream with
its own unique key.

229Apple Platform Security

HomeKit security with Apple TV
HomeKit securely connects some third-party remote accessories to Apple TV and supports
adding user profiles to the owner of the home’s Apple TV.

Using third-party remote accessories with Apple TV
Some third-party remote accessories provide Human Interface Design (HID) events and
Siri audio to an associated Apple TV added using the Home app. The remote sends the
HID events over the secure session to the Apple TV. A Siri-capable TV remote sends audio
data to Apple TV when the user explicitly activates the microphone on the remote using a
dedicated Siri button. The remote sends the audio frames directly to the Apple TV using
a dedicated local network connection. A per-session HKDF-SHA512 derived key-pair that
is negotiated over the HomeKit session between Apple TV and the TV remote is used to
encrypt the local network connection. HomeKit decrypts the audio frames on Apple TV and
forwards them to the Siri app, where they are treated with the same privacy protections as
all Siri audio input.

Apple TV profiles for HomeKit homes
When a user of a HomeKit home adds their profile to the owner of the home’s Apple TV,
it gives that user access to their TV shows, music, and podcasts. Settings for each user
regarding their profile use on the Apple TV are shared to the owner’s iCloud account using
iCloud end-to-end encryption. The data is owned by each user and is shared as read-only
to the owner. Each user of the home can change these values in the Home app and the
Apple TV of the owner uses these settings.

When a setting is turned on, the iTunes account of the user is made available on the
Apple TV. When a setting is turned off, all account and data pertaining to that user is
deleted on the Apple TV. The initial CloudKit share is initiated by the user’s device and the
token to establish the secure CloudKit share is sent over the same secure channel that is
used to sync data between users of the home.

230Apple Platform Security

SiriKit security for iOS, iPadOS, and watchOS
Siri uses the app extension system to communicate with third-party apps. On a device,
Siri can access the user’s contact information and the device’s current location.
But before it provides protected data to an app, Siri checks the app’s user-controlled
access permissions. According to those permissions, Siri passes only the relevant fragment
of the original user utterance to the app extension. For example, if an app doesn’t have
access to contact information, Siri won’t resolve a relationship in a user request such as
“Pay my mother 10 dollars using Payment App.” In this case, the app would see only the
literal term “my mother.”

However, if the user has granted the app access to contact information, the app would
receive resolved information about the user’s mother. If a relationship is referenced in the
body portion of a message—for example, “Tell my mother on MessageApp that my brother
is awesome”—Siri doesn’t resolve “my brother” regardless of the app’s permissions.

SiriKit-enabled apps can send app-specific or user-specific vocabulary to Siri, such as
the names of the user’s contacts. This information allows Siri’s speech recognition and
natural language understanding to recognize vocabulary for that app and is associated with
a random identifier. The custom information remains available as long as the identifier is
in use, or until the user disables the app’s Siri integration in Settings, or until the SiriKit-
enabled app is uninstalled.

For an utterance like “Get me a ride to my mom’s home using RideShareApp,” the request
requires location data from the user’s contacts. For that request only, Siri provides the
required information to the app’s extension, regardless of the user permission settings for
location or contact information for the app.

231Apple Platform Security

WidgetKit security
WidgetKit is the framework developers use to offer widgets and watch complications.
Both may show sensitive information and can be highly visible, especially on devices with
an Always On display.

In iOS, users can configure whether to show sensitive data on the Lock Screen and while
in Always On. In Settings, they can deactivate data access for Lock Screen widgets in the
“Allow Access When Locked” section of Settings > Face ID & Passcode.

On Apple Watch, users can configure whether to show sensitive data during Always On
by choosing Settings > Display & Brightness > Always On > Hide Sensitive Complications.
They can also choose to show redacted content for all or individual complications.

If a user chooses to hide content they consider private, WidgetKit renders a placeholder or
redactions. To configure redactions, a developer must:

1. Implement the redacted(reason:) callback.

2. Read out the privacy property.

3. Provide custom placeholder views.

Developers can also render a view as unredacted with the unredacted() view modifier.

As an alternative to marking individual views as privacy sensitive, for example, if an entire
widget content is privacy sensitive, the developer can add the Data Protection capability
to a widget extension. Until a user unlocks their device to match the privacy level selected,
WidgetKit displays placeholders instead of the widget content. The developer must enable
the Data Protection capability for the widget extension in Xcode and then set the Data
Protection entitlement to the value that fits the level of privacy they want to offer:

•	 NSFileProtectionComplete

•	 NSFileProtectionCompleteUnlessOpen

WidgetKit hides these widgets’ content when the device is passcode locked and displays a
placeholder until a user authenticates after they restart their device. Additionally, these iOS
widgets arenʼt available as iPhone widgets on Mac.

232Apple Platform Security

DriverKit security for macOS
DriverKit is the framework that allows developers to create device drivers that the user
installs on their Mac. Drivers built with DriverKit run in user space, rather than as kernel
extensions, for improved system security and stability. This makes for easier installation
and increases the stability and security of macOS.

The user simply downloads the app (installers aren’t necessary when using system
extensions or DriverKit) and the extension is enabled only when required. These replace
kexts for many use cases, which require administrator privileges to install in /System/
Library or /Library.

IT administrators who use device drivers, cloud storage solutions, networking, and security
apps that require kernel extensions are encouraged to move to newer versions that are
built on system extensions. These newer versions greatly reduce the possibility of kernel
panics on the Mac as well as reduce the attack surface. These new extensions run in the
user space, won’t require special privileges required for installation, and are automatically
removed when the bundling app is moved to the Trash.

The DriverKit framework provides C++ classes for I/O services, device matching, memory
descriptors, and dispatch queues. It also defines I/O-appropriate types for numbers,
collections, strings, and other common types. The user uses these with family-specific
driver frameworks like USBDriverKit and HIDDriverKit. Use the System Extensions
framework to install and upgrade a driver.

233Apple Platform Security

ReplayKit security in iOS and iPadOS
ReplayKit is a framework that allows developers to add recording and live broadcasting
capabilities to their apps. In addition, it allows users to annotate their recordings and
broadcasts using the device’s front-facing camera and microphone.

Movie recording
There are several layers of security built into recording a movie:

•	 Permissions dialog: Before recording starts, ReplayKit presents a user consent alert
requesting that the user acknowledge their intent to record the screen, the microphone,
and the front-facing camera. This alert is presented once per app process, and it’s
presented again if the app is left in the background for longer than 8 minutes.

•	 Screen and audio capture: Screen and audio capture occurs out of the app’s process in
the ReplayKit daemon replayd. This is designed to ensure the recorded content is never
accessible to the app process.

•	 In-app screen and audio capture: This allows an app to get video and sample buffers,
which is guarded by the permissions dialogue.

•	 Movie creation and storage: The movie file is written to a directory that’s only
accessible to the ReplayKit subsystems and is never accessible to any apps. This helps
prevent recordings being used by third parties without the user’s consent.

•	 End-user preview and sharing: The user has the ability to preview and share the movie
with a user interface vended by ReplayKit. The user interface is presented out-of-
process through the iOS Extension infrastructure and has access to the generated
movie file.

234Apple Platform Security

ReplayKit broadcasting
There are several layers of security built into broadcasting a movie:

•	 Screen and audio capture: The screen and audio capture mechanism during
broadcasting is identical to movie recording and occurs in replayd.

•	 Broadcast extensions: For third-party services to participate in ReplayKit broadcasting,
they’re required to create two new extensions that are configured with the com.apple.
broadcast-services endpoint:

•	 A user interface extension that allows the user to set up their broadcast

•	 An upload extension that handles uploading video and audio data to the service’s
back-end servers

The architecture helps ensure that hosting apps have no privileges to the broadcasted
video and audio contents. Only ReplayKit and the third-party broadcast extensions have
access.

•	 Broadcast picker: With the broadcast picker, users initiate system broadcasts directly
from their app using the same system-defined user interface that’s accessible using
Control Center. The user interface is implemented using a private API and is an
extension that lives within the ReplayKit framework. It is out-of-process from the
hosting app.

•	 Upload extension: The extension that third-party broadcast services implement to
handle video and audio content during broadcasting uses raw unencoded sample
buffers. During this mode of handling, video and audio data is serialized and passed to
the third-party upload extension in real time through a direct XPC connection.
Video data is encoded by extracting the IOSurface object from the video sample buffer,
encoding it securely as an XPC object, sending it over through XPC to the third-party
extension, and decoding it securely back into an IOSurface object.

235Apple Platform Security

ARKit security in iOS and iPadOS
ARKit is a framework that lets developers produce augmented reality experiences in their
app or game. Developers can add 2D or 3D elements using the front or rear camera of an
iOS or iPadOS device.

Apple designed cameras with privacy in mind, and third-party apps must obtain the
user’s consent before accessing the camera. In iOS and iPadOS, when a user grants an
app access to their camera, that app can access real-time images from the front and rear
cameras. Apps aren’t allowed to use the camera without transparency that the camera is
in use.

Photos and videos taken with the camera may contain other information, such as where
and when they were taken, the depth of field, and overcapture. If users don’t want photos
and videos taken with the Camera app to include location, they can control this at any time
by going to Settings > Privacy > Location Services > Camera. If users don’t want photos
and video to include location when shared, they can turn location off in the Options menu
in the share sheet.

To better position the user’s AR experience, apps that use ARKit can use world- or face-
tracking information from the other camera. World tracking uses algorithms on the user’s
device to process information from these sensors to determine their position relative to a
physical space. World tracking enables features such as Optical Heading in Maps.

236Apple Platform Security

Secure device management

Secure device management overview
iOS, iPadOS, macOS, tvOS, and watchOS support flexible security policies and
configurations that are easy to enforce and manage. Through them, organizations
can protect corporate information and help ensure that employees meet enterprise
requirements, even if they are using devices they’ve provided themselves—for example,
as part of a “bring your own device” (BYOD) program.

Organizations can use the mobile device management (MDM) framework implemented
by an MDM solution to enforce passcode requirements, configure settings,
restrict functionality, and even remotely wipe corporate data on managed devices.
This helps keep corporate data secure, even when employees use their personal devices to
access this data.

237Apple Platform Security

Pairing model security for iPhone and iPad
iOS and iPadOS use a pairing model to control access to a device from a host computer.
Pairing establishes a trust relationship between the device and its connected host,
signified by public key exchange. iOS and iPadOS also use this sign of trust to enable
additional functionality with the connected host, such as data syncing. In iOS 9 or later,
services:

•	 That require pairing can’t be started until after the device has been unlocked by the
user

•	 Won’t start unless the device has been recently unlocked

•	 May (such as with photo syncing) require the device to be unlocked to begin

The pairing process requires the user to unlock the device and accept the pairing request
from the host. In iOS 9 or later, the user is also required to enter their passcode,
after which the host and device exchange and save 2048-bit RSA public keys. The host is
then given a 256-bit key that can unlock an escrow keybag stored on the device.
The exchanged keys are used to start an encrypted SSL session, which the device requires
before it sends protected data to the host or starts a service (iTunes or Finder syncing,
file transfers, Xcode development, and so on). To use this encrypted session for all
communication,
the device requires connections from a host over Wi-Fi, so it must have been previously
paired over USB. Pairing also enables several diagnostic capabilities. In iOS 9, if a pairing
record hasn’t been used for more than 6 months, it expires. In iOS 11 or later, this time
frame is shortened to 30 days.

Certain diagnostic services, including com.apple.mobile.pcapd, are restricted to work
only over USB. Additionally, the com.apple.file_relay service requires an Apple-signed
configuration profile to be installed. In iOS 11 or later, Apple TV can use the Secure Remote
Password protocol to wirelessly establish a pairing relationship.

A user can clear the list of trusted hosts with the Reset Network Settings or Reset Location
& Privacy options.

238Apple Platform Security

Mobile device management

Mobile device management security overview
Apple operating systems support mobile device management (MDM), which allows
organizations to securely configure and manage scaled Apple device deployments.

How MDM works securely
MDM capabilities are built on operating system technologies, such as configurations, over-
the-air enrollment, and the Apple Push Notification service (APNs). For example, APNs is
used to wake the device and trigger it to communicate directly with its MDM solution over a
secured connection. No confidential or proprietary information is transmitted over APNs.

Using MDM, IT departments can enroll Apple devices in an enterprise or educational
environment, wirelessly configure and update settings, monitor compliance, manage
software updates, and even remotely wipe or lock managed devices.

In iOS 13, iPadOS 13.1, and macOS 10.15, or later, Apple devices support a new enrollment
option specifically designed for “bring your own device” BYOD programs. User Enrollment
provides more autonomy for users on their own devices, while increasing the security of
enterprise data by cryptographically separating managed data. This provides a better
balance of security, privacy, and user experience for BYOD programs. A similar data
separation mechanism has been added for account-driven Device Enrollments in iOS 17,
iPadOS 17, and macOS 14, or later.

Enrollment types
•	 User Enrollment: User Enrollment is designed for devices owned by the user and

is integrated with Managed Apple IDs to establish a user identity on the device.
Managed Apple IDs are required to initiate the enrollment, and the user must
successfully authenticate for the enrollment to succeed. Managed Apple IDs can be
used alongside a personal Apple ID that the user has already signed in with. Managed
apps and accounts use the Managed Apple ID, and personal apps and accounts use the
personal Apple ID.

•	 Device Enrollment: Device Enrollment allows organizations to have users manually
enroll devices and then manage many different aspects of device use, including the
ability to erase the device. Device Enrollment also has a larger set of configurations
and restrictions that can be applied to the device. When a user removes an enrollment
profile, all configurations, settings, and managed apps based on that enrollment profile
are removed. Similar to User Enrollment, Device Enrollment can also be integrated with
a Managed Apple ID. This account-driven Device Enrollment also provides the ability to
use a Managed Apple ID alongside a personal Apple ID and cryptographically separates
corporate data.

•	 Automated Device Enrollment: Automated Device Enrollment lets organizations
configure and manage devices from the moment the devices are removed from the box.
These devices are known as supervised, and users have the option to prevent the MDM
profile from being removed by the user. Automated Device Enrollment is designed for
devices owned by the organization.

239Apple Platform Security

Device restrictions
Restrictions can be enabled—or in some cases, disabled—by administrators to help
prevent users from accessing a specific app, service, or function of an iPhone, iPad, Mac,
Apple TV, or Apple Watch that’s enrolled in an MDM solution. Restrictions are sent to
devices in a restrictions payload, which is part of a configuration. Certain restrictions on an
iPhone may be mirrored on a paired Apple Watch.

Passcode and password settings management
By default, the user’s passcode can be defined as a numeric PIN on iOS, iPadOS, and
watchOS. In iPhone and iPad devices with Face ID or Touch ID, the default passcode length
is six digits, with a minimum of four digits. Because longer and more complex passcodes
are harder to guess or attack, they are recommended.

Administrators can enforce complex passcode requirements and other policies using MDM
or on iOS and iPadOS, Microsoft Exchange. An administrator password is needed when
the macOS passcode policy payload is installed manually. Passcode policies can require a
certain passcode length, composition, or other attributes.

Apple Watch uses numeric passcodes by default. If a passcode policy applied to a
managed Apple Watch requires the use of non-numeric characters, the paired iPhone
needs to be used to unlock the device.

240Apple Platform Security

Configuration enforcement
Configurations are the primary way that an MDM solution delivers and manages policies
and restrictions on managed devices. If organizations need to configure a large number of
devices—or to provide lots of custom email settings, network settings, or certificates to a
large number of devices—configurations are a safe and secure way to do it.

Configurations
A configuration is an XML profile or json formatted file following a certain structure and
consists of payloads that load settings and authorization information onto Apple devices.
Configurations automate the configuration of settings, accounts, restrictions,
and credentials. These files can be created by an MDM solution or Apple Configurator for
Mac, or they can be created manually. Before organizations send a configuration to an
Apple device, they must enroll the device in the MDM solution using an enrollment profile.

Note: Apple Configurator for Mac can only be used to manage configuration profiles on
iPhone, iPad, and Apple TV devices.

Enrollment profiles
An enrollment profile is a configuration with an MDM payload that enrolls the device in the
MDM solution specified for that device. This allows the MDM solution to send commands
and configurations to the device and to query certain aspects of the device. When a user
removes an enrollment profile, all configurations, their settings, and depending on the
enrollment type and used configuration also managed apps based on that enrollment
profile are removed with it. There can be only one enrollment profile on a device at a time.

Example configurations
A configuration contains a number of settings in specific payloads that can be specified,
including (but not limited to):

•	 Passcode and password policies

•	 Restrictions on device features (for example, disabling the camera)

•	 Network and VPN settings

•	 Microsoft Exchange settings

•	 Mail settings

•	 Account settings

•	 LDAP directory service settings

•	 CalDAV calendar service settings

•	 Credentials and identities

•	 Certificates

•	 Software updates

241Apple Platform Security

Profile signing and encryption
Configuration profiles can be signed, to validate their origin, and encrypted, to help
ensure their integrity and protect their contents. Configuration profiles for iOS and iPadOS
are encrypted using the Cryptographic Message Syntax (CMS) specified in RFC 5652,
supporting 3DES and AES128.

Profile installation
Configurations can be installed on devices using an MDM solution or manually by the
users. Alternatively, Apple Configurator for Mac can be used to deploy configurations
to iOS, iPadOS, and tvOS devices. Some configurations require the installation using
an MDM solution. For information on how to remove profiles, see Intro to mobile device
management in Apple Platform Deployment.

Note: On supervised devices, configuration profiles can also be locked to a device. This is
designed to prevent their removal or to allow removal only with a passcode.

Automated Device Enrollment
Organizations can automatically enroll iOS, iPadOS, macOS, and tvOS devices in a mobile
device management (MDM) solution without having to physically touch or prepare the
devices before users get them. After enrolling in Apple School Manager, Apple Business
Manager, or Apple Business Essentials one of the services, administrators sign in to the
service website and link the program to their MDM solution. The devices they purchased
can then be assigned to users through MDM. During the device configuration process,
the device queries Apple servers for an assigned MDM and if so, reaches out to the MDM
solution to perform the enrollment. Using Automated Device Enrollment and a compatible
MDM solution allows organizations to implement the following security measures:

•	 Have users authenticate as part of the initial setup flow in the Apple device’s Setup
Assistant during activation.

•	 Provide a preliminary configuration with limited access and require additional device
configuration to access sensitive data.

•	 Require devices to run a minimum operating system version before enrolling.

•	 Enforce FileVault enablement on Mac computers.

After a device has enrolled with MDM, any configurations, restrictions, or controls are
automatically installed.

The setup process for users can be further simplified by removing specific steps in the
Setup Assistant for devices so that users are up and running quickly. If steps are skipped,
the more privacy-preserving setting is used. For example, if the pane to configure location
services is skipped, the service is not enabled during Setup Assistant.

Administrators can also control whether users can remove the MDM profile from the device
and help ensure that configurations and restrictions are in place throughout the life cycle
of the device.

https://www.ietf.org/rfc/rfc5652.txt
https://support.apple.com/guide/deployment/depc0aadd3fe
https://support.apple.com/guide/deployment/depc0aadd3fe

242Apple Platform Security

Apple School Manager, Apple Business Manager, and
Apple Business Essentials
Apple School Manager, Apple Business Manager, and Apple Business Essentials are
services for IT administrators to deploy Apple devices that an organization has purchased
directly from Apple or through participating Apple Authorized Resellers and carriers.

When used with an MDM solution, administrators can simplify the setup process for
users, configure device settings, and distribute apps and books purchased in these three
services. Apple School Manager also integrates with Student Information Systems (SISs)
directly or using SFTP, and all three services support directory synchronization and
federated authentication, so accounts can be automatically provisioned, updated,
and deprovisioned based on an organization’s identity provider (IdP).

Apple maintains certifications in compliance with the ISO/IEC 27001 and 27018 standards
to enable Apple customers to address their regulatory and contractual obligations.
These certifications provide our customers with an independent attestation over Apple’s
Information Privacy and Security practices for in-scope systems. For more information,
see Apple internet services security certifications in Apple Platform Certifications.

Note: To learn whether an Apple program is available in a specific country or region,
see the Apple Support article Availability of Apple programs and payment methods for
education and business.

Device supervision
Supervision generally denotes that the device is owned by the organization, giving them
additional control over the device’s configuration and restrictions. For more information,
see About Apple device supervision in Apple Platform Deployment.

Supervision gets automatically enabled on a device when using Automated Device
Enrollment.

https://support.apple.com/guide/certifications/apc34d2c0468b
https://support.apple.com/102867
https://support.apple.com/102867
https://support.apple.com/guide/deployment/dep1d89f0bff

243Apple Platform Security

Activation Lock security
How Apple enforces Activation Lock varies depending on whether the device is an iPhone
or an iPad, a Mac with Apple silicon, or an Intel-based Mac with the Apple T2 Security Chip.

Behavior on iPhone and iPad
On iPhone and iPad devices, Activation Lock is enforced through the activation process
after the Wi-Fi selection screen in iOS and iPadOS Setup Assistant. When device indicates
that its activating, it sends a request to an Apple server to get an activation certificate.
Devices that are Activation Locked prompt the user for the iCloud credentials of the user
that enabled Activation Lock at this time. iOS and iPadOS Setup Assistant won’t progress
unless a valid certificate can be obtained.

Behavior on a Mac with Apple silicon
In a Mac with Apple silicon, LLB verifies that a valid LocalPolicy for the device exists
and that the LocalPolicy policy anti-replay values match the values stored in the Secure
Storage Component. The Low-Level Bootloader (LLB) boots to recoveryOS if:

•	 There is no LocalPolicy for the current macOS

•	 The LocalPolicy is invalid for that macOS

•	 The LocalPolicy anti-replay value hash values don’t match the hashes of values stored
in the Secure Storage Component

recoveryOS detects that the Mac computer isn’t activated and contacts the activation
server to get an activation certificate. If the device is Activation Locked, recoveryOS
prompts the user for iCloud credentials of the user that enabled Activation Lock at this
time. After a valid activation certificate is obtained, that activation certificate key is used
to obtain a RemotePolicy certificate. The Mac computer uses the LocalPolicy key and
RemotePolicy certificate to produce a valid LocalPolicy. LLB won’t allow booting of macOS
unless a valid LocalPolicy is present.

Behavior on Intel-based Mac computers
In an Intel-based Mac with a T2 chip, the T2 chip firmware verifies that a valid activation
certificate is present before allowing the computer to boot to macOS. UEFI firmware loaded
by the T2 chip is responsible for querying the activation status of the device from the T2
chip and booting to recoveryOS instead of booting to macOS if a valid activation certificate
isn’t present. recoveryOS detects that the Mac isn’t activated and contacts the activation
server to get an activation certificate. If the device is Activation Locked, recoveryOS
prompts the user for iCloud credentials of the user that enabled Activation Lock at this
time. UEFI firmware won’t allow booting of macOS unless a valid activation certificate is
present.

244Apple Platform Security

Managed Lost Mode and remote wipe
Managed Lost Mode is used to locate supervised devices when they are stolen. After they
are located, they can be remotely locked or erased.

Managed Lost Mode
If a supervised iOS or iPadOS device with iOS 9 or later is lost or stolen, a mobile device
management (MDM) administrator can remotely enable Lost Mode (called Managed Lost
Mode) on that device. When Managed Lost Mode is enabled, the current user is logged out
and the device can’t be unlocked. The screen displays a message that can be customized
by the administrator, such as displaying a phone number to call if the device is found.
The administrator can also request the device to send its current location (even if Location
Services are off) and, optionally, play a sound. When an administrator turns off Managed
Lost Mode, which is the only way the mode can be exited, the user is informed of this
action through a message on the Lock Screen or an alert on the Home Screen.

Remote wipe
iPhone, iPad, Mac, Apple TV, and Apple Watch devices can be erased remotely by an
administrator or user, rendering all data unreadable.

When a remote wipe command is triggered by MDM or iCloud, the device sends an
acknowledgment back to the MDM solution and performs the wipe. For remote wipe
through Microsoft Exchange ActiveSync, the device checks in with the Microsoft Exchange
Server before performing the wipe.

Remote wipe isn’t possible in the following situations:

•	 With User Enrollment

•	 Using Microsoft Exchange ActiveSync when the account that was installed with User
Enrollment

•	 Using Microsoft Exchange ActiveSync if the device is supervised

Users can also wipe supported devices in their possession using Settings (iPhone and
iPad) or System Settings (Mac). And as mentioned, iPhone, iPad, and Apple Watch devices
can be set to automatically wipe after a series of failed passcode attempts.

Instant remote wipe is available on Mac computers with Apple silicon and Mac computers
with an Apple T2 Security Chip or if FileVault is turned on. Instant remote wipe is achieved
by securely discarding the media key.

245Apple Platform Security

Shared iPad security in iPadOS
Shared iPad is a multiuser mode for use in iPad deployments. It allows users to share an
iPad while maintaining separation of documents and data for each user. Each user gets
their own private, reserved storage location, which is implemented as an APFS (Apple
File System) volume protected by the user’s credential. Shared iPad requires the use of a
Managed Apple ID that’s issued and owned by the organization.

With Shared iPad, a user can sign in to any organizationally owned device that is
configured for use by multiple users. User data is partitioned into separate directories,
each in their own data protection domains and protected by both UNIX permissions and
sandboxing. In iPadOS 13.4 or later, users can also sign in to a temporary session. When
the user signs out of a temporary session, their APFS volume is deleted and its reserved
space is returned to the system.

Signing in to Shared iPad
Both native and federated Managed Apple IDs are supported when signing in to
Shared iPad. When using a federated account for the first time, the user is redirected to
the Identity Provider’s (IdP) sign-in portal. After authenticated, a short-lived access token
is issued for the backing Managed Apple IDs—and the login process proceeds similarly
to the native Managed Apple IDs sign-in process. Once signed in, Setup Assistant on
Shared iPad prompts the user to establish a passcode (credential) used to secure the local
data on the device and to authenticate to the login screen in the future. Like a single-
user device, in which the user would sign in once to their Managed Apple ID using their
federated account and then unlock their device with their passcode, on Shared iPad the
user signs in once using their federated account and from then on uses their established
passcode.

When a user signs in without federated authentication, the Managed Apple ID is
authenticated with Apple Identity Service (IDS) using the SRP protocol. If authentication
is successful, a short-lived access token specific to the device is granted. If the user has
used the device before, they already have a local user account, which is unlocked using the
same credential.

If the user hasn’t used the device before or is using the temporary session feature,
Shared iPad provisions a new UNIX user ID, an APFS volume to store the user’s personal
data, and a local keychain. Because storage is allocated (reserved) for the user at the
time the APFS volume is created, there may be insufficient space to create a new volume.
In such an event, the system identifies an existing user whose data has finished syncing
to the cloud and evicts that user from the device so that the new user to sign in. In the
unlikely event that all existing users haven’t completed uploading their cloud data, the new
user sign in fails. To sign in, the new user will need to wait for one user’s data to finish
syncing, or have an administrator forcibly delete an existing user account, thereby risking
data loss.

If the device isn’t connected to the internet (for example, if the user has no Wi-Fi access
point), authentication can occur against the local account for a limited number of days. In
that situation, only users with previously existing local accounts or a temporary session can
sign in. After the time limit has expired, users are required to authenticate online, even if a
local account already exists.

246Apple Platform Security

After a user’s local account has been unlocked or created, if it’s remotely authenticated,
the short-lived token issued by Apple’s servers is converted to an iCloud token that permits
signing in to iCloud. Next, the users’ settings are restored and their documents and data
are synced from iCloud.

While a user session is active and the device remains online, documents and data are
stored on iCloud as they are created or modified. In addition, a background syncing
mechanism helps ensure that changes are pushed to iCloud, or to other web services using
NSURLSession background sessions, after the user signs out. After background syncing for
that user is complete, the user’s APFS volume is unmounted and can’t be mounted again
without the user signing back in.

Temporary sessions don’t sync data with iCloud, and although a temporary session can
sign into a third-party syncing service such as Box or Google Drive, there’s no facility to
continue syncing data when the temporary session ends.

Signing out of Shared iPad
When a user signs out of Shared iPad, that user’s keybag is immediately locked and all
apps are shut down. To accelerate the case of a new user signing in, iPadOS defers some
ordinary sign-out actions temporarily and presents a login window to the new user. If a user
signs in during this time (approximately 30 seconds), Shared iPad performs the deferred
cleanup as part of signing in to the new user account. However, if Shared iPad remains idle,
it triggers the deferred cleanup. During the cleanup phase, Login Window is restarted as if
another sign-out had occurred.

When a temporary session is ended, Shared iPad performs the full logout sequence and
deletes the temporary session’s APFS volume immediately.

247Apple Platform Security

Apple Configurator security
Apple Configurator for Mac features a flexible, secure, device-centric design that lets an
administrator quickly and easily configure one or dozens of iOS, iPadOS, and tvOS devices
connected to a Mac through USB (or tvOS devices paired through Bonjour) before giving
them to users. With Apple Configurator for Mac, an administrator can update software,
install apps and configuration profiles, rename and change wallpaper on devices,
export device information and documents, and much more.

Apple Configurator for Mac can also revive or restore Mac computers with Apple silicon
and those with the Apple T2 Security Chip. When a Mac is revived or restored in this
manner, the file containing the latest minor updates to the operating systems (macOS,
recoveryOS for Apple silicon, or sepOS for T2) is securely downloaded from Apple servers
and installed directly on the Mac. After a successful revive or restore, the file is deleted
from the Mac running Apple Configurator. At no time can the user inspect or use this file
outside of Apple Configurator.

Administrators can also choose to add devices to Apple School Manager, Apple
Business Manager, or Apple Business Essentials using Apple Configurator for Mac or
Apple Configurator for iPhone, even if the devices weren’t purchased directly from Apple,
an Apple Authorized Reseller, or an authorized cellular carrier. When the administrator
sets up a device that has been manually enrolled, it behaves like any other device in one
of those services, with mandatory supervision and mobile device management (MDM)
enrollment. For devices that weren’t purchased directly, the user has a 30-day provisional
period to release the device from one of those services, supervision, and MDM.

Organizations can also use Apple Configurator for Mac to activate iOS, iPadOS, and tvOS
devices that have absolutely no internet connection by connecting them to a host Mac
with an internet connection while the devices are being set up. Administrators can restore,
activate, and prepare devices with their necessary configuration including apps, profiles,
and documents without ever needing to connect to either Wi-Fi or cellular networks.
This feature doesn’t allow an administrator to bypass any existing Activation Lock
requirements normally required during nontethered activation.

248Apple Platform Security

Screen Time security
Screen Time is a built-in feature for seeing and managing how much time adults and their
children spend on apps, websites and more. There are two types of users: adults and
(managed) children.

Although Screen Time isn’t a new system security feature, it’s important to understand
how it protects the privacy and security of the data gathered and shared between devices.
Screen Time is available in iOS 12 or later, iPadOS 13.1 or later, macOS 10.15 or later,
and some features of watchOS 6 or later.

The table below describes the main features of Screen Time.

Feature Supported operating system

View usage data iOS

iPadOS

macOS

Enforce additional restrictions iOS

iPadOS

macOS

watchOS

Set web usage limits iOS

iPadOS

macOS

Set app limits iOS

iPadOS

macOS

watchOS

Configure Downtime iOS

iPadOS

macOS

watchOS

For users managing their own device usage, Screen Time controls and usage data can be
synced across devices associated to the same iCloud account using CloudKit end-to-end
encryption. This requires that the user’s account have two-factor authentication enabled
(syncing is on by default). Screen Time replaces the Restrictions feature found in previous
versions of iOS and iPadOS, and the Parental Controls feature found in previous versions of
macOS.

In iOS 13 or later, iPadOS 13.1 or later, and macOS 10.15 or later, Screen Time users and
managed children automatically share their usage across devices if their iCloud account
has two-factor authentication enabled. When a user clears Safari history or deletes an app,
the corresponding usage data is removed from the device and all synced devices.

249Apple Platform Security

Parents and Screen Time
Parents can also use Screen Time in iOS, iPadOS, and macOS devices to understand and
control their children’s use. If the parent is a family organizer (in iCloud Family Sharing),
they can view usage data and manage Screen Time settings for their children. Children are
informed when their parents turn on Screen Time, and they can monitor their own usage
as well. When parents turn on Screen Time for their children, the parents set a passcode
so their children can’t make changes. When they reach age of majority (age will vary
depending on country or region), the children can turn this monitoring off.

Usage data and configuration settings are transferred between the parentʼs and childʼs
devices using the end-to-end encrypted Apple Identity Service (IDS) protocol. Encrypted
data may be briefly stored on IDS servers until it’s read by the receiving device
(for example, as soon as the iPhone or iPad is turned on, if it was off). This data isn’t
readable by Apple.

Screen Time analytics
If the user turns on Share iPhone & Watch Analytics, only the following anonymized data is
collected so that Apple can better understand how Screen Time is being used:

•	 Was Screen Time turned on during Setup Assistant or later in Settings

•	 Change in Category usage after creating a limit for it (within 90 days)

•	 Is Screen Time turned on

•	 Is Downtime enabled

•	 Number of times the “Ask for more” query was used

•	 Number of app limits

•	 Number of times users viewed usage in the Screen Time settings, per user type and per
view type (local, remote, widget)

•	 Number of times users ignore a limit, per user type

•	 Number of times users delete a limit, per user type

No specific app or web usage data is gathered by Apple. When a user sees a list of apps in
Screen Time usage information, the app icons are pulled directly from the App Store,
which doesn’t retain any data from these requests.

250Apple Platform Security

Glossary

Address Space Layout Randomization (ASLR) A technique employed by operating
systems to make the successful exploitation by a software bug much more difficult. By
ensuring memory addresses and offsets are unpredictable, exploit code can’t hard code
these values.

AES (Advanced Encryption Standard) A popular global encryption standard used to
encrypt data to keep it private.

AES cryptographic engine A dedicated hardware component that implements AES.

AES-XTS A mode of AES defined in IEEE 1619-2007 meant to work for encrypting storage
media.

APFS (Apple File System) The default file system for iOS, iPadOS, tvOS, watchOS,
and Mac computers using macOS 10.13 or later. APFS features strong encryption, space
sharing, snapshots, fast directory sizing, and improved file system fundamentals.

Apple Business Manager A simple, web-based portal for IT administrators that provides a
fast, streamlined way for organizations to deploy Apple devices that they have purchased
directly from Apple or from a participating Apple Authorized Reseller or carrier. They can
automatically enroll devices in their mobile device management (MDM) solution without
having to physically touch or prepare the devices before users get them.

Apple Identity Service (IDS) Apple’s directory of iMessage public keys, APNs addresses,
and phone numbers and email addresses that are used to look up the keys and device
addresses.

Apple Push Notification service (APNs) A worldwide service provided by Apple that
delivers push notifications to Apple devices.

Apple School Manager A simple, web-based portal for IT administrators that provides a
fast, streamlined way for organizations to deploy Apple devices that they have purchased
directly from Apple or from a participating Apple Authorized Reseller or carrier. They can
automatically enroll devices in their mobile device management (MDM) solution without
having to physically touch or prepare the devices before users get them.

Apple Security Bounty A reward given by Apple to researchers who report a vulnerability
that affects the latest shipping operating systems and, where relevant, the latest hardware.

Boot Camp A Mac utility that supports the installation of Microsoft Windows on supported
Mac computers.

251Apple Platform Security

Boot Progress Register (BPR) A set of system on chip (SoC) hardware flags that software
can use to track the boot modes the device has entered, such as Device Firmware Update
(DFU) mode and Recovery mode. After a Boot Progress Register flag is set, it can’t be
cleared. This allows later software to get a trusted indicator of the state of the system.

Boot ROM The very first code executed by a device’s processor when it first boots. As an
integral part of the processor, it can’t be altered by either Apple or an attacker.

CKRecord A dictionary of key-value pairs that contain data saved to or fetched from
CloudKit.

Data Protection A file and keychain protection mechanism for supported Apple devices.
It can also refer to the APIs that apps use to protect files and keychain items.

Data Vault A mechanism—enforced by the kernel—to protect against unauthorized access
to data regardless of whether the requesting app is itself sandboxed.

Device Firmware Upgrade (DFU) mode A mode in which a device’s Boot ROM code waits
to be recovered over USB. The screen is black when in DFU mode, but upon connecting
to a computer running iTunes or the Finder, the following prompt is presented: “Finder (or
the iTunes) has detected an (iPhone or iPad) in Recovery mode. The user must restore this
(iPhone or iPad) before it can be used with Finder (or the iTunes).”

direct memory access (DMA) A feature that allows hardware subsystems to access main
memory directly, bypassing the CPU.

Effaceable Storage A dedicated area of NAND storage, used to store cryptographic keys,
that can be addressed directly and wiped securely. While it doesn’t provide protection if an
attacker has physical possession of a device, keys held in Effaceable Storage can be used
as part of a key hierarchy to facilitate fast wipe and forward security.

Elliptic Curve Diffie-Hellman Exchange Ephemeral (ECDHE) A key exchange mechanism
based on elliptic curves. ECDHE allows two parties to agree on a secret key in a way
that prevents the key from being discovered by an eavesdropper watching the messages
between the two parties.

Elliptic Curve Digital Signature Algorithm (ECDSA) A digital signature algorithm based on
elliptic curve cryptography.

Enhanced Serial Peripheral Interface (eSPI) An all-in-one bus designed for synchronous
serial communication.

Exclusive Chip Identification (ECID) A 64-bit identifier that’s unique to the processor in
each iPhone or iPad.

file system key The key that encrypts each file’s metadata, including its class key. This is
kept in Effaceable Storage to facilitate fast wipe, rather than confidentiality.

Gatekeeper In macOS, a technology designed to help ensure that only trusted software
runs on a user’s Mac.

group ID (GID) Like the UID, but common to every processor in a class.

hardware security module (HSM) A specialized tamper-resistant computer that
safeguards and manages digital keys.

HMAC A hash-based message authentication code based on a cryptographic hash
function.

252Apple Platform Security

iBoot The stage 2 boot loader for all Apple devices. Code that loads XNU, as part of
the secure boot chain. Depending on the system on chip (SoC) generation, iBoot may be
loaded by the Low Level Bootloader or directly by the Boot ROM.

Input/Output Memory Management Unit (IOMMU) An input/output memory management
unit. A subsystem in an integrated chip that controls access to address space from other
input/output devices and peripherals.

integrated circuit (IC) Also known as a microchip.

Joint Test Action Group (JTAG) A standard hardware debugging tool used by
programmers and circuit developers.

keybag A data structure used to store a collection of class keys. Each type (user, device,
system, backup, escrow, or iCloud Backup) has the same format.

A header containing: Version (set to four in iOS 12 or later), Type (system, backup, escrow,
or iCloud Backup), Keybag UUID, an HMAC if the keybag is signed, and the method used
for wrapping the class keys—tangling with the UID or PBKDF2, along with the salt and
iteration count.

A list of class keys: Key UUID, Class (which file or Keychain Data Protection class),
wrapping type (UID-derived key only; UID-derived key and passcode-derived key),
wrapped class key, and a public key for asymmetric classes.

keychain The infrastructure and a set of APIs used by Apple operating systems and third-
party apps to store and retrieve passwords, keys, and other sensitive credentials.

key wrapping Encrypting one key with another. iOS and iPadOS use NIST AES key
wrapping, in accordance with RFC 3394.

Low-Level Bootloader (LLB) On Mac computers with a two-stage boot architecture,
the LLB contains the code that’s invoked by the Boot ROM and that in turn loads iBoot,
as part of the secure boot chain.

media key Part of the encryption key hierarchy that helps provide for a secure and instant
wipe. In iOS, iPadOS, tvOS, and watchOS, the media key wraps the metadata on the
data volume (and thus without it access to all per-file keys is impossible, rendering files
protected with Data Protection inaccessible). In macOS, the media key wraps the keying
material, all metadata, and data on the FileVault protected volume. In either case, wipe of
the media key renders encrypted data inaccessible.

memory controller The subsystem in a system on chip that controls the interface between
the system on chip and its main memory.

mobile device management (MDM) A service that lets an administrator remotely manage
enrolled devices. After a device is enrolled, the administrator can use the MDM service
over the network to configure settings and perform other tasks on the device without user
interaction.

NAND Nonvolatile flash memory.

Passcode-derived key (PDK) The encryption key derived from the entangling of the user
password with the long-term SKP key and the UID of the Secure Enclave.

per-file key The key used by Data Protection to encrypt a file on the file system.
The per-file key is wrapped by a class key and is stored in the fileʼs metadata.

https://www.ietf.org/rfc/rfc3394.txt

253Apple Platform Security

provisioning profile A property list (.plist file) signed by Apple that contains a set of
entities and entitlements allowing apps to be installed and tested on an iOS or iPadOS
device. A development provisioning profile lists the devices that a developer has chosen
for ad hoc distribution, and a distribution provisioning profile contains the app ID of an
enterprise-developed app.

Recovery mode A mode used to restore many Apple devices if it doesn’t recognize the
user’s device so the user can reinstall the operating system.

ridge flow angle mapping A mathematical representation of the direction and width of the
ridges extracted from a portion of a fingerprint.

Sealed Key Protection (SKP) A technology in Data Protection that protects, or seals,
encryption keys with measurements of system software and keys available only in hardware
(such as the UID of the Secure Enclave).

Secure Storage Component A chip designed with immutable RO code, a hardware random
number generator, cryptography engines, and physical tamper detection. On supported
devices, the Secure Enclave is paired with a Secure Storage Component for anti-replay
value storage. To read and update anti-replay values, the Secure Enclave and storage chip
employ a secure protocol that helps ensure exclusive access to the anti-replay values.
There are multiple generations of this technology with differing security guarantees.

sepOS The Secure Enclave firmware, based on an Apple-customized version of the
L4 microkernel.

software seed bits Dedicated bits in the Secure Enclave AES Engine that get appended to
the UID when generating keys from the UID. Each software seed bit has a corresponding
lock bit. The Secure Enclave Boot ROM and operating system can independently change
the value of each software seed bit as long as the corresponding lock bit hasn’t been set.
After the lock bit is set, neither the software seed bit nor the lock bit can be modified.
The software seed bits and their locks are reset when the Secure Enclave reboots.

SSD controller A hardware subsystem that manages the storage media (solid-state drive).

System Coprocessor Integrity Protection (SCIP) A mechanism Apple uses designed to
prevent modification of coprocessor firmware.

system on chip (SoC) An integrated circuit (IC) that incorporates multiple components
into a single chip. The Application Processor, the Secure Enclave, and other coprocessors
are components of the SoC.

system software authorization A process that combines cryptographic keys built
into hardware with an online service to check that only legitimate software from Apple,
appropriate to supported devices, is supplied and installed at upgrade time.

tangling The process by which a user’s passcode is turned into a cryptographic key and
strengthened with the device’s UID. This process helps ensure that a brute-force attack
must be performed on a given device, and thus is rate limited and can’t be performed in
parallel. The tangling algorithm is PBKDF2, which uses AES keyed with the device UID as
the pseudorandom function (PRF) for each iteration.

Unified Extensible Firmware Interface (UEFi) firmware A replacement technology for
BIOS to connect firmware to a computer’s operating system.

Uniform Resource Identifier (URI) A string of characters that identifies a web-based
resource.

254Apple Platform Security

unique ID (UID) A 256-bit AES key that’s burned into each processor at manufacture.
It can’t be read by firmware or software, and it’s used only by the processor’s hardware
AES Engine. To obtain the actual key, an attacker would have to mount a highly
sophisticated and expensive physical attack against the processor’s silicon. The UID isn’t
related to any other identifier on the device including, but not limited to, the UDID.

xART An abbreviation for eXtended Anti-Replay Technology. A set of services that provide
encrypted, authenticated persistent storage for the Secure Enclave with anti-replay
capabilities based on the physical storage architecture. See Secure Storage Component.

XProtect In macOS, an antivirus technology for the signature-based detection and
removal of malware.

XNU The kernel at the heart of the Apple operating systems. It’s assumed to be trusted,
and it enforces security measures such as code signing, sandboxing, entitlement checking,
and Address Space Layout Randomization (ASLR).

255Apple Platform Security

Document revision history

Document revision history

May 2024
Topics added:

•	 Cryptex1 Image4 Manifest Hash (spih)

•	 Cryptex1 Generation (stng)

•	 BlastDoor for Messages and IDS

•	 Lockdown Mode security

•	 App Store security

•	 WidgetKit security

Topics updated:

•	 Intro to Apple platform security

•	 Apple SoC security

•	 Secure Enclave

•	 Face ID, Touch ID, passcodes, and passwords

•	 Facial matching security

•	 Uses for Face ID and Touch ID

•	 Express Cards with power reserve

•	 Operating system integrity

•	 Activating data connections securely

•	 Verifying accessories

•	 System security for watchOS

•	 Passcodes and passwords

•	 Data Protection overview

•	 Keybags for Data Protection

•	 Protecting keys in alternate boot modes

•	 Protecting user data in the face of attack

•	 Managing FileVault

256Apple Platform Security

•	 Intro to app security for iOS and iPadOS

•	 Gatekeeper and runtime protection

•	 Managed Apple ID security

•	 iCloud encryption

•	 Account recovery contact security

•	 Legacy Contact security

•	 iCloud Keychain security overview

•	 Secure keychain syncing

•	 Escrow security for iCloud Keychain

•	 Card provisioning security overview

•	 Adding credit or debit cards to Apple Pay

•	 Paying with cards using Apple Pay

•	 Apple Card security

•	 Tap to Pay on iPhone

•	 Access using Apple Wallet

•	 Access key types

•	 IDs in Apple Wallet

•	 Security of IDs in Apple Wallet

•	 Developer kit security overview

•	 Communication security

•	 MDM security overview

•	 Configuration enforcement

December 2022
Topics added:

•	 Advanced Data Protection for iCloud

Topics updated:

•	 iCloud security overview

•	 iCloud encryption

•	 Security of iCloud Backup

•	 Account recovery contact security

•	 Legacy Contact security

257Apple Platform Security

May 2022
Updated for:

•	 iOS 15.4

•	 iPadOS 15.4

•	 macOS 12.3

•	 tvOS 15.4

•	 watchOS 8.5

Topics added:

•	 Paired recoveryOS restrictions

•	 Local Operating System Version (love)

•	 Health sharing

•	 Account recovery contact security

•	 Legacy Contact security

•	 Tap to Pay on iPhone

•	 Access using Apple Wallet

•	 Access key types

•	 IDs in Apple Wallet

•	 Siri-enabled HomeKit accessories

Topics updated:

•	 Magic Keyboard with Touch ID

•	 Face ID, Touch ID, passcodes, and passwords

•	 Facial matching security

•	 Express Cards with power reserve

•	 Boot modes

•	 Contents of a LocalPolicy file for a Mac with Apple silicon

•	 Signed system volume security

•	 System security for watchOS

•	 Apple Security Research Device

•	 Role of Apple File System

•	 Protecting app access to user data

•	 Intro to app security for macOS

•	 Protecting against malware

•	 iCloud security overview

•	 Secure keychain syncing

•	 Secure iCloud Keychain recovery

•	 Paying with cards using Apple Pay

258Apple Platform Security

•	 Contactless passes in Apple Pay

•	 Rendering cards unusable with Apple Pay

•	 Apple Card application

•	 Apple Cash security

•	 Adding transit and eMoney cards to Apple Wallet

•	 Secure Apple Messages for Business

•	 FaceTime security

•	 Car key security

•	 Apple Configurator security

Topics removed:

•	 HomeKit accessories and iCloud

May 2021
Updated for:

•	 iOS 14.5

•	 iPadOS 14.5

•	 macOS 11.3

•	 tvOS 14.5

•	 watchOS 7.4

Topics added:

•	 Magic Keyboard with Touch ID.

•	 Secure intent and connections to the Secure Enclave.

•	 Auto Unlock and Apple Watch.

•	 CustomOS Image4 Manifest Hash (coih).

Topics updated:

•	 Added two new Express Mode transactions in Express Cards with power reserve.

•	 Edited Secure Enclave feature summary.

•	 Software update content added to Secure Multi-Boot (smb3).

•	 Additional content for Sealed Key Protection (SKP).

259Apple Platform Security

February 2021
Updated for:

•	 iOS 14.3

•	 iPadOS 14.3

•	 macOS 11.1

•	 tvOS 14.3

•	 watchOS 7.2

Topics added:

•	 Memory safe iBoot implementation

•	 Boot process

•	 Boot modes

•	 Startup Disk security policy control

•	 LocalPolicy signing-key creation and management

•	 Contents of a LocalPolicy file for a Mac with Apple silicon

•	 Signed system volume security

•	 Apple Security Research Device

•	 Password Monitoring

•	 IPv6 security

•	 Car key security

Topics updated:

•	 Secure Enclave

•	 Hardware microphone disconnect

•	 recoveryOS and diagnostics environments

•	 Direct memory access protections

•	 Securely extending the kernel

•	 System Integrity Protection

•	 System security for watchOS

•	 Managing FileVault

•	 App access to saved passwords

•	 Password security recommendations

•	 Apple Cash security

•	 Secure Apple Messages for Business

•	 Wi-Fi privacy

•	 Activation Lock security

•	 Apple Configurator security

260Apple Platform Security

April 2020
Updated for:

•	 iOS 13.4

•	 iPadOS 13.4

•	 macOS 10.15.4

•	 tvOS 13.4

•	 watchOS 6.2

Updates:

•	 iPad microphone disconnect added to Hardware microphone disconnect.

•	 Data vaults added to Protecting app access to user data.

•	 Updates to Managing FileVault and Command-line tools.

•	 Malware Removal Tool additions in Protecting against malware.

•	 Updates to Shared iPad security.

December 2019
Merged the iOS Security Guide, macOS Security Overview, and the Apple T2 Security Chip
Overview

Updated for:

•	 iOS 13.3

•	 iPadOS 13.3

•	 macOS 10.15.2

•	 tvOS 13.3

•	 watchOS 6.1.1

Privacy Controls, Siri and Siri Suggestions, and Safari Intelligent Tracking Prevention have
been removed. See https://www.apple.com/privacy/ for the latest on those features.

May 2019
Updated for iOS 12.3

•	 Support for TLS 1.3

•	 Revised description of AirDrop security

•	 DFU mode and Recovery mode

•	 Passcode requirements for accessory connections

November 2018
Updated for iOS 12.1

•	 Group FaceTime

https://www.apple.com/privacy/

261Apple Platform Security

September 2018
Updated for iOS 12

•	 Secure Enclave

•	 OS Integrity Protection

•	 Express Card with power reserve

•	 DFU mode and Recovery mode

•	 HomeKit TV Remote accessories

•	 Contactless passes

•	 Student ID cards

•	 Siri Suggestions

•	 Shortcuts in Siri

•	 Shortcuts app

•	 User password management

•	 Screen Time

•	 Security Certifications and programs

July 2018
Updated for iOS 11.4

•	 Biometric policies

•	 HomeKit

•	 Apple Pay

•	 Business Chat

•	 Messages in iCloud

•	 Apple Business Manager

December 2017
Updated for iOS 11.2

•	 Apple Pay Cash

262Apple Platform Security

October 2017
Updated for iOS 11.1

•	 Security Certifications and programs

•	 Touch ID/Face ID

•	 Shared Notes

•	 CloudKit end-to-end encryption

•	 TLS update

•	 Apple Pay, Paying with Apple Pay on the web

•	 Siri Suggestions

•	 Shared iPad

July 2017
Updated for iOS 10.3

•	 Secure Enclave

•	 File Data Protection

•	 Keybags

•	 Security Certifications and programs

•	 SiriKit

•	 HealthKit

•	 Network Security

•	 Bluetooth

•	 Shared iPad

•	 Lost Mode

•	 Activation Lock

•	 Privacy Controls

263Apple Platform Security

March 2017
Updated for iOS 10

•	 System Security

•	 Data Protection classes

•	 Security Certifications and programs

•	 HomeKit, ReplayKit, SiriKit

•	 Apple Watch

•	 Wi-Fi, VPN

•	 Single sign-on

•	 Apple Pay, Paying with Apple Pay on the web

•	 Credit, debit, and prepaid card provisioning

•	 Safari Suggestions

May 2016
Updated for iOS 9.3

•	 Managed Apple ID

•	 Two-factor authentication for Apple ID

•	 Keybags

•	 Security Certifications

•	 Lost Mode, Activation Lock

•	 Secure Notes

•	 Apple School Manager

•	 Shared iPad

264Apple Platform Security

September 2015
Updated for iOS 9

•	 Apple Watch Activation Lock

•	 Passcode policies

•	 Touch ID API support

•	 Data Protection on A8 uses AES-XTS

•	 Keybags for unattended software update

•	 Certification updates

•	 Enterprise app trust model

•	 Data Protection for Safari bookmarks

•	 App Transport Security

•	 VPN specifications

•	 iCloud Remote Access for HomeKit

•	 Apple Pay Rewards cards, Apple Pay card issuer’s app

•	 Spotlight on-device indexing

•	 iOS Pairing Model

•	 Apple Configurator 2

•	 Restrictions

265Apple Platform Security

© 2024 Apple Inc. All rights reserved.

Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of
Apple may constitute trademark infringement and unfair competition in violation of federal and state laws.

Apple, the Apple logo, AirDrop, AirPlay, Apple Books, Apple Card, Apple Music, Apple Pay, Apple TV, Apple Wallet,
Apple Watch, AppleScript, ARKit, Bonjour, Boot Camp, CarPlay, Face ID, FaceTime, FileVault, Finder, FireWire,
Find My, Handoff, HealthKit, HomeKit, HomePod, HomePod mini, iMac, iMac Pro, iMessage, iPad, iPadOS, iPad Air,
iPad Pro, iPhone, iTunes, Keychain, Lightning, Mac, Mac Catalyst, Mac mini, Mac Pro, MacBook, MacBook Air,
MacBook Pro, macOS, Magic Keyboard, Objective-C, OS X, QuickType, Retina, Rosetta, Safari, Siri, Siri Remote,
SiriKit, Swift, Spotlight, Touch ID, TrueDepth, tvOS, watchOS, and Xcode are trademarks of Apple Inc., registered
in the U.S. and other countries and regions.

App Clips and Touch Bar are trademarks of Apple Inc.

App Store, AppleCare, CloudKit, iCloud, iCloud Drive, iCloud Keychain, and iTunes Store are service marks of
Apple Inc., registered in the U.S. and other countries and regions.

Apple Messages for Business is a service mark of Apple Inc.

Apple
One Apple Park Way
Cupertino, CA 95014
apple.com

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such
marks by Apple is under license.

Java is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Other product and company names mentioned herein may be trademarks of their respective companies.

Every effort has been made to ensure that the information in this manual is accurate. Apple is not responsible
for printing or clerical errors. Information about products not manufactured by Apple, or independent websites
not controlled or tested by Apple, is provided without recommendation or endorsement. Apple assumes no
responsibility with regard to the selection, performance, or use of third-party websites or products. Apple
makes no representations regarding third-party website accuracy or reliability. Contact the vendor for additional
information.

Some apps are not available in all areas. App availability is subject to change.

028-00780

https://www.apple.com

	Contents
	Apple Platform Security
	Intro to Apple platform security

	Hardware security and biometrics
	Hardware security overview
	Apple SoC security
	Secure Enclave
	Face ID and Touch ID
	Face ID and Touch ID security
	Magic Keyboard with Touch ID
	Face ID, Touch ID, passcodes, and passwords
	Facial matching security
	Uses for Face ID and Touch ID
	Secure intent and connections to the Secure Enclave

	Hardware microphone disconnect
	Express Cards with power reserve

	System security
	System security overview
	Secure boot
	Boot process for iPhone and iPad devices
	Memory safe iBoot implementation
	Mac computers with Apple silicon
	Boot process
	Boot modes
	Paired recoveryOS restrictions
	Startup Disk security policy control
	LocalPolicy signing-key creation and management
	Contents of a LocalPolicy file for a Mac with Apple silicon

	Intel-based Mac computers
	Boot process
	Boot modes
	Startup Security Utility
	Firmware password protection
	recoveryOS and diagnostics environments

	Signed system volume security
	Secure software updates
	Operating system integrity
	Activating data connections securely
	Verifying accessories
	BlastDoor for Messages and IDS
	Lockdown Mode security
	Additional macOS system security capabilities
	Additional macOS system security capabilities
	System Integrity Protection
	Trust caches
	Peripheral processor security
	Rosetta 2 on a Mac with Apple silicon
	Direct memory access protections
	Securely extending the kernel
	Option ROM security
	UEFI firmware security in an Intel-based Mac

	System security for watchOS
	Random number generation
	Apple Security Research Device

	Encryption and Data Protection
	Encryption and Data Protection overview
	Passcodes and passwords
	Data Protection
	Data Protection overview
	Data Protection
	Data Protection classes
	Keybags for Data Protection
	Protecting keys in alternate boot modes
	Protecting user data in the face of attack
	Sealed Key Protection (SKP)
	Role of Apple File System
	Keychain data protection

	FileVault
	Volume encryption with FileVault
	Managing FileVault

	How Apple protects users’ personal data
	Protecting app access to user data
	Protecting access to user’s health data

	Digital signing and encryption

	App security
	App security overview
	App security in iOS and iPadOS
	Intro to app security for iOS and iPadOS
	App Store security
	App code signing process
	Security of runtime process
	Supporting extensions
	App protection and app groups

	App security in macOS
	Intro to app security for macOS
	App code signing process
	Gatekeeper and runtime protection
	Protecting against malware
	Controlling app access to files

	Secure features in the Notes app
	Secure features in the Shortcuts app

	Services security
	Services security overview
	Apple ID and Managed Apple ID
	Apple ID security
	Managed Apple ID security

	iCloud
	iCloud security overview
	iCloud encryption
	Advanced Data Protection for iCloud
	Security of iCloud Backup
	iCloud Private Relay security
	Account recovery contact security
	Legacy Contact security

	Passcode and password management
	Passcode security overview
	Sign in with Apple security
	Automatic strong passwords
	Password AutoFill security
	App access to saved passwords
	Password security recommendations
	Password Monitoring
	Sending passwords
	Credential provider extensions
	iCloud Keychain
	iCloud Keychain security overview
	Secure keychain syncing
	Secure iCloud Keychain recovery
	Escrow security for iCloud Keychain

	Apple Pay
	Apple Pay security overview
	Apple Pay component security
	How Apple Pay keeps users’ purchases protected
	Credit, debit, and prepaid cards
	Card provisioning security overview
	Adding credit or debit cards to Apple Pay

	Payment authorization with Apple Pay
	Paying with cards using Apple Pay
	Contactless passes in Apple Pay
	Rendering cards unusable with Apple Pay
	Apple Card security
	Apple Cash security
	Tap to Pay on iPhone

	Using Apple Wallet
	Access using Apple Wallet
	Access key types
	Car key security
	Adding transit and eMoney cards to Apple Wallet
	IDs in Apple Wallet
	IDs in Apple Wallet
	Security of IDs in Apple Wallet

	iMessage
	iMessage security overview
	How iMessage sends and receives messages
	Secure iMessage name and photo sharing

	Secure Apple Messages for Business
	FaceTime security
	Find My
	Find My security
	Locating missing devices

	Continuity
	Continuity security overview
	Handoff security
	iPhone cellular call relay security
	iPhone Text Message Forwarding security
	Instant Hotspot security

	Network security
	Network security overview
	TLS security
	IPv6 security
	VPN security
	Wi-Fi security
	Secure access to wireless networks
	Wi-Fi privacy

	Bluetooth security
	Ultra Wideband security in iOS
	Single sign-on
	Single sign-on security

	AirDrop security
	Wi-Fi password sharing security on iPhone and iPad
	Firewall security in macOS

	Developer kit security
	Developer kit security overview
	HomeKit security
	Communication security
	Data security
	Securing routers with HomeKit
	Camera security
	Security with Apple TV

	SiriKit security
	WidgetKit security
	DriverKit security
	ReplayKit security
	ARKit security

	Secure device management
	Secure device management overview
	Pairing model security
	Mobile device management
	MDM security overview
	Configuration enforcement
	Automated Device Enrollment
	Activation Lock security
	Managed Lost Mode and remote wipe
	Shared iPad security

	Apple Configurator security
	Screen Time security

	Glossary
	Document revision history
	Document revision history

	Copyright

